Predicting student’s performance using machine learning methods: A systematic literature review

Author(s):  
Yahia Baashar ◽  
Gamal Alkawsi ◽  
Nor'ashikin Ali ◽  
Hitham Alhussian ◽  
Hussein T Bahbouh
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


2019 ◽  
Vol 137 ◽  
pp. 106024 ◽  
Author(s):  
Thyago P. Carvalho ◽  
Fabrízzio A. A. M. N. Soares ◽  
Roberto Vita ◽  
Roberto da P. Francisco ◽  
João P. Basto ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Claus Boye Asmussen ◽  
Charles Møller

Abstract Manual exploratory literature reviews should be a thing of the past, as technology and development of machine learning methods have matured. The learning curve for using machine learning methods is rapidly declining, enabling new possibilities for all researchers. A framework is presented on how to use topic modelling on a large collection of papers for an exploratory literature review and how that can be used for a full literature review. The aim of the paper is to enable the use of topic modelling for researchers by presenting a step-by-step framework on a case and sharing a code template. The framework consists of three steps; pre-processing, topic modelling, and post-processing, where the topic model Latent Dirichlet Allocation is used. The framework enables huge amounts of papers to be reviewed in a transparent, reliable, faster, and reproducible way.


Informatics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 56
Author(s):  
Deepika Verma ◽  
Kerstin Bach ◽  
Paul Jarle Mork

The field of patient-centred healthcare has, during recent years, adopted machine learning and data science techniques to support clinical decision making and improve patient outcomes. We conduct a literature review with the aim of summarising the existing methodologies that apply machine learning methods on patient-reported outcome measures datasets for predicting clinical outcomes to support further research and development within the field. We identify 15 articles published within the last decade that employ machine learning methods at various stages of exploiting datasets consisting of patient-reported outcome measures for predicting clinical outcomes, presenting promising research and demonstrating the utility of patient-reported outcome measures data for developmental research, personalised treatment and precision medicine with the help of machine learning-based decision-support systems. Furthermore, we identify and discuss the gaps and challenges, such as inconsistency in reporting the results across different articles, use of different evaluation metrics, legal aspects of using the data, and data unavailability, among others, which can potentially be addressed in future studies.


Sign in / Sign up

Export Citation Format

Share Document