A fast stereo matching using image segmentation for high quality dense disparity maps

Author(s):  
Wei-qun Li ◽  
Xian-ming Chen
Author(s):  
Zaid Al-Huda ◽  
Donghai Zhai ◽  
Yan Yang ◽  
Riyadh Nazar Ali Algburi

Deep convolutional neural networks (DCNNs) trained on the pixel-level annotated images have achieved improvements in semantic segmentation. Due to the high cost of labeling training data, their applications may have great limitation. However, weakly supervised segmentation approaches can significantly reduce human labeling efforts. In this paper, we introduce a new framework to generate high-quality initial pixel-level annotations. By using a hierarchical image segmentation algorithm to predict the boundary map, we select the optimal scale of high-quality hierarchies. In the initialization step, scribble annotations and the saliency map are combined to construct a graphic model over the optimal scale segmentation. By solving the minimal cut problem, it can spread information from scribbles to unmarked regions. In the training process, the segmentation network is trained by using the initial pixel-level annotations. To iteratively optimize the segmentation, we use a graphical model to refine segmentation masks and retrain the segmentation network to get more precise pixel-level annotations. The experimental results on Pascal VOC 2012 dataset demonstrate that the proposed framework outperforms most of weakly supervised semantic segmentation methods and achieves the state-of-the-art performance, which is [Formula: see text] mIoU.


2014 ◽  
Vol 989-994 ◽  
pp. 1088-1092
Author(s):  
Chen Guang Zhang ◽  
Yan Zhang ◽  
Xia Huan Zhang

In this paper, a novel interactive medical image segmentation method called SMOPL is proposed. This method only needs marking some pixels on foreground region for segmentation. To do this, SMOPL characterize the inherent correlations among foreground and background pixels as Hilbert-Schmidt independence. By maximizing the independence and minimizing the smoothness of labels on instance neighbor graph simultaneously, SMOPL gets the sufficiently smooth confidences of both positive and negative classes in absence of negative training examples. Then a image segmentation can be obtained by assigning each pixel to the label for which the greatest confidence is calculated. Experiments on real-world medical images show that SMOPL is robust to get a high-quality segmentation with only positive label examples.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1396 ◽  
Author(s):  
Jin Liu ◽  
Yanxin Li ◽  
Ruth Wilkins ◽  
Farrah Flegal ◽  
Joan H.M. Knoll ◽  
...  

Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations.


2020 ◽  
Vol 64 (2) ◽  
pp. 20505-1-20505-12
Author(s):  
Hui-Yu Huang ◽  
Zhe-Hao Liu

Abstract A stereo matching algorithm is used to find the best match between a pair of images. To compute the cost of the matching points from the sequence of images, the disparity maps from video streams are estimated. However, the estimated disparity sequences may cause undesirable flickering errors. These errors result in low visibility of the synthesized video and reduce video coding. In order to solve this problem, in this article, the authors propose a spatiotemporal disparity refinement on local stereo matching based on the segmentation strategy. Based on segmentation information, matching point searching, and color similarity, adaptive disparity values to recover the disparity errors in disparity sequences can be obtained. The flickering errors are also effectively removed, and the boundaries of objects are well preserved. The procedures of the proposed approach consist of a segmentation process, matching point searching, and refinement in the temporal and spatial domains. Experimental results verify that the proposed approach can yield a high quantitative evaluation and a high-quality disparity map compared with other methods.


Sign in / Sign up

Export Citation Format

Share Document