Study on torque vectoring differential for vehicle stability control via hardware-in-loop simulation

Author(s):  
Lifu Li ◽  
Zhan Wu
Author(s):  
Ahmet Kirli ◽  
Chinedum E. Okwudire ◽  
A. Galip Ulsoy

There is growing interest in steer-by-wire (SBW) systems because they provide significant benefits to classical vehicles, and are indispensable to autonomous vehicles. However, an emergency backup strategy is needed to steer a vehicle to safety if its SBW actuators fail completely. Differential drive assisted steering (DDAS), which uses torque vectoring to steer a vehicle, has been proposed as a backup strategy for SBW systems. However, vehicle stability control (VSC) — a required feature in most modern vehicles — also relies on torque vectoring. This paper demonstrates, for the first time, through simulations, that conflicts may arise between VSC and DDAS, rendering DDAS ineffective as a SBW system backup strategy. This preliminary study motivates the need to pay attention to, and develop strategies for addressing these conflicts. As an example, the addition of speed control to DDAS is shown as a potential strategy for mitigating these conflicts.


2001 ◽  
Vol 29 (2) ◽  
pp. 108-132 ◽  
Author(s):  
A. Ghazi Zadeh ◽  
A. Fahim

Abstract The dynamics of a vehicle's tires is a major contributor to the vehicle stability, control, and performance. A better understanding of the handling performance and lateral stability of the vehicle can be achieved by an in-depth study of the transient behavior of the tire. In this article, the transient response of the tire to a steering angle input is examined and an analytical second order tire model is proposed. This model provides a means for a better understanding of the transient behavior of the tire. The proposed model is also applied to a vehicle model and its performance is compared with a first order tire model.


Author(s):  
Justin Sill ◽  
Beshah Ayalew

This paper presents a predictive vehicle stability control (VSC) strategy that distributes the drive/braking torques to each wheel of the vehicle based on the optimal exploitation of the available traction capability for each tire. To this end, tire saturation levels are defined as the deficiency of a tire to generate a force that linearly increases with the relevant slip quantities. These saturation levels are then used to set up an optimization objective for a torque distribution problem within a novel cascade control structure that exploits the natural time scale separation of the slower lateral handling dynamics of the vehicle from the relatively faster rotational dynamics of the wheel/tire. The envisaged application of the proposed vehicle stability strategy is for vehicles with advanced and emerging pure electric, hybrid electric or hydraulic hybrid power trains featuring independent wheel drives. The developed predictive control strategy is evaluated for, a two-axle truck featuring such an independent drive system and subjected to a transient handling maneuver.


2013 ◽  
Vol 658 ◽  
pp. 602-608 ◽  
Author(s):  
Cheng Lin ◽  
Chun Lei Peng

This paper presents the design of mixed H∞/H2Output Feedback Controller for Independent Drive Electric Vehicle Stability Control. It generates yaw moment by applying driving intervention at front Independent driving wheels according to the vehicle states. The performance of the proposed controller is evaluated through a series of simulations under different velocity and different mass. The simulation results show that the controller can help vehicle against a certain range of uncertainty (speeds and loads) and get excellent robust performance.


Sign in / Sign up

Export Citation Format

Share Document