Noise analysis of the input matching circuits for UWB Low Noise Amplifiers

Author(s):  
Niti Mohan ◽  
V. Vaithianathan
2016 ◽  
Vol 698 ◽  
pp. 142-148
Author(s):  
Masataka Kamiyama ◽  
Daiki Oki ◽  
Satoru Kawauchi ◽  
Cong Bing Li ◽  
Nobuo Takahashi ◽  
...  

This paper describes multi-band low noise amplifiers (LNAs) utilizing input matching transformers. We investigate a conventional dual-band LNA circuit utilizing a transformer, and show our analysis and simulation results for its circuit. Based on this, we propose a triple band LNA with transformers. We have calculated characteristics of the dual-band and triple-band LNAs. As the results, the LNAs show gain of 20dB while maintaining good input matching, in the frequencies at 2.59GHz, 3.50GHz and 5.41 GHz. Then we discuss configuration and design of coupling coefficients of the transformers.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450011 ◽  
Author(s):  
A. FATHIANPOUR ◽  
S. SEYEDTABAII

In this paper, an optimized design procedure based on genetic algorithm (GA) for automatic synthesis of dual-band concurrent fully integrated low-noise amplifiers (LNA) targeted to 802.16d @ 3.5 GHz and 802.11b, g @ 2.4 GHz standards is discussed. The algorithm delivers the circuit elements geometry, rather than their values, and bias levels to secure the best level of LNA gain, input matching, output matching and power consumption. Working on the components geometry level aims at considering the elements parasitic effects. The basic cascode and a current reuse folded cascode LNA's are tried. GA as an optimization engine is programmed in MATLAB and performance evaluation in 0.18 μm RF CMOS TSMC technology is ceded to HSPICE. Results indicate that the automated scheme well computes the desired circuit in an acceptable time span; otherwise, it may be explored by either tremendous manual trial and error or astronomical cycles of an exhaustive search. This is not accomplished without imposing certain approximate search space constraints.


Author(s):  
Dmitriy Volkhin ◽  
◽  
Gennadiy Devyatkov ◽  

The problem of broadband matching of active elements in terms of noise figure is inevitably encountered in the design of broadband low-noise microwave amplifiers. Despite the fact that this problem differs from the classical problem of broadband matching of signal source and load, it can be reduced to a form suitable for applying methods for solving the classical problem. For this purpose, in this work, the own parameters of a reactive two-port network are derived that match active elements in terms of noise figure in the entire frequency band, where the data for calculating this coefficient are determined. The own parameters of such a two-port network, on the one hand, make it possible to construct methods for the synthesis of input matching circuits of low-noise amplifiers and other devices where low noise matching is required. On the other hand, the own parameters allow one to construct estimates of the maximum achievable bandwidth for a matching circuit of a given complexity.


2020 ◽  
Vol 96 (3s) ◽  
pp. 347-352
Author(s):  
Д.Г. Алипа ◽  
В.В. Краснов ◽  
В.М. Минненбаев ◽  
А.В. Редька ◽  
Ю.В. Федоров

В статье представлены результаты исследования возможности применения при криогенных температурах водородного уровня дискретных приборов и монолитных схем на основе нитрида галлия в составе малошумящих усилителей сантиметрового и миллиметрового диапазона длин волн для приемных устройств систем дистанционного зондирования Земли из космоса и в составе криогенных комплексов наблюдения космического пространства. The article presents the results of the research on the possibility of using discrete devices and gallium nitride monolithic circuits at the cryogenic temperatures of hydrogen level as part of low-noise amplifiers of centimeter and millimeter-wave bands used in receivers of Earth remote sensing space systems and in cryogenic systems for space observation.


Sign in / Sign up

Export Citation Format

Share Document