Prediction of Heart Rate and Blood Oxygen from Physiological Signals

Author(s):  
Muhammad Ijaz ◽  
Atiq Ur Rehman ◽  
Amine Bermak
2021 ◽  
Vol 27 (5) ◽  
pp. 509-513
Author(s):  
Rui Li

ABSTRACT Introduction: Due to various uncertain and unexpected factors in life such as diseases, natural disasters, traffic accidents, and congenital disabilities, the number and proportion of lower limb amputations are still rising for many reasons, so the research on lower limb prostheses is particularly important. Objective: This work aimed to study the relationship between altitude exercise and cardiopulmonary function. Methods: A model of abnormal changes in cardiopulmonary function was established, and then 40 plateau exercisers were selected, all of whom arrived in Tibet in March 2017. The relationship between pulmonary circulation volume and internal pressure in the chest was observed and compared. The relationship between cardiopulmonary sensory reflex and exercise (high altitude) breathing and heart rate was analyzed. A comparison of the cardiopulmonary function of subjects of different genders was implemented. Moreover, the influence of different altitudes on the subjects’ cardiopulmonary function and the subjects’ cardiopulmonary function changes before departure and during the first, second, and third week after departure were observed and compared. Results: I. As the pressure in the thoracic cavity increased, the subjects’ pulmonary circulation blood volume gradually decreased, and the decrease was most obvious in the stage of thoracic pressure −50 to 0. II. As the cardiorespiratory reflex coefficient increased, the subjects’ breathing and heart rate compensatory acceleration appeared. III. Tracking and monitoring of the subjects’ cardiopulmonary indicators revealed that with the increase in altitude, the subjects’ average arterial pressure, respiratory frequency, and heart rate all showed an upward trend, while the blood oxygen saturation value showed a downward trend. IV. No matter how high the altitude was, the average arterial pressure, respiratory rate, and heart rate monitored of the subjects under exercise were significantly superior to the indicator values under resting state. In contrast, the blood oxygen saturation value showed the opposite trend. V. The subjects’ average arterial pressure, respiration, and heart rate in the first week were higher than other periods, but the blood oxygen saturation was relatively lower. In the second and third weeks, the changes in cardiopulmonary function were relatively smooth (all P<0.05). VI. The changes in the index of the cardiopulmonary function of subjects of different genders were small (p>0.05). Conclusion: Through modeling, the results of the plateau environment on the cardiopulmonary function of the body were made clearer, and these research data provided theoretical references for the training of the sports field in the plateau area. Level of evidence II; Therapeutic studies - investigation of treatment results.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6849
Author(s):  
Marta Vicente-Rodríguez ◽  
Damián Iglesias Gallego ◽  
Juan Pedro Fuentes-García ◽  
Vicente Javier Clemente-Suárez

This study aims to analyze the psychophysiological stress response of a helicopter crew using portable biosensors, and to analyze the psychophysiological stress response differences of experienced and non-experienced crew members. We analyzed 27 participants (33.89 ± 5.93 years) divided into two different flight maneuvers: a crane rescue maneuver: 15 participants (three control and 12 military) and a low-altitude maneuver: 12 participants (five control and seven military). Anxiety, rating of perceived exertion, subjective perception of stress, heart rate, blood oxygen saturation, skin temperature, blood lactate, cortical arousal, autonomic modulation, leg and hand strength, leg flexibility, spirometry, urine, and short-term memory were analyzed before and after both helicopter flight maneuvers. The maneuvers produced a significant increase in stress and effort perception, state of anxiety, and sympathetic modulation, as well as a significant decrease in heart rate, blood oxygen saturation, leg and inspiratory muscle strength, and urine proteins. The use of biosensors showed how a crane rescue and low-altitude helicopter maneuvers produced an anticipatory anxiety response, showing an increased sympathetic autonomic modulation prior to the maneuvers, which was maintained during the maneuvers in both experienced and non-experienced participants. The crane rescue maneuver produced a higher maximal heart rate and decreased pulmonary capacity and strength than the low-altitude maneuver. The psychophysiological stress response was higher in the experienced than in non-experienced participants, but both presented an anticipatory stress response before the maneuver.


2020 ◽  
Vol 14 ◽  
Author(s):  
Ivo V. Stuldreher ◽  
Nattapong Thammasan ◽  
Jan B. F. van Erp ◽  
Anne-Marie Brouwer

Interpersonal physiological synchrony (PS), or the similarity of physiological signals between individuals over time, may be used to detect attentionally engaging moments in time. We here investigated whether PS in the electroencephalogram (EEG), electrodermal activity (EDA), heart rate and a multimodal metric signals the occurrence of attentionally relevant events in time in two groups of participants. Both groups were presented with the same auditory stimulus, but were instructed to attend either to the narrative of an audiobook (audiobook-attending: AA group) or to interspersed emotional sounds and beeps (stimulus-attending: SA group). We hypothesized that emotional sounds could be detected in both groups as they are expected to draw attention involuntarily, in a bottom-up fashion. Indeed, we found this to be the case for PS in EDA or the multimodal metric. Beeps, that are expected to be only relevant due to specific “top-down” attentional instructions, could indeed only be detected using PS among SA participants, for EDA, EEG and the multimodal metric. We further hypothesized that moments in the audiobook accompanied by high PS in either EEG, EDA, heart rate or the multimodal metric for AA participants would be rated as more engaging by an independent group of participants compared to moments corresponding to low PS. This hypothesis was not supported. Our results show that PS can support the detection of attentionally engaging events over time. Currently, the relation between PS and engagement is only established for well-defined, interspersed stimuli, whereas the relation between PS and a more abstract self-reported metric of engagement over time has not been established. As the relation between PS and engagement is dependent on event type and physiological measure, we suggest to choose a measure matching with the stimulus of interest. When the stimulus type is unknown, a multimodal metric is most robust.


2019 ◽  
Vol 126 (3) ◽  
pp. 717-729 ◽  
Author(s):  
Kimberly A. Ingraham ◽  
Daniel P. Ferris ◽  
C. David Remy

Body-in-the-loop optimization algorithms have the capability to automatically tune the parameters of robotic prostheses and exoskeletons to minimize the metabolic energy expenditure of the user. However, current body-in-the-loop algorithms rely on indirect calorimetry to obtain measurements of energy cost, which are noisy, sparsely sampled, time-delayed, and require wearing a respiratory mask. To improve these algorithms, the goal of this work is to predict a user’s steady-state energy cost quickly and accurately using physiological signals obtained from portable, wearable sensors. In this paper, we quantified physiological signal salience to discover which signals, or groups of signals, have the best predictive capability when estimating metabolic energy cost. We collected data from 10 healthy individuals performing 6 activities (walking, incline walking, backward walking, running, cycling, and stair climbing) at various speeds or intensities. Subjects wore a suite of physiological sensors that measured breath frequency and volume, limb accelerations, lower limb EMG, heart rate, electrodermal activity, skin temperature, and oxygen saturation; indirect calorimetry was used to establish the ‘ground truth’ energy cost for each activity. Evaluating Pearson’s correlation coefficients and single and multiple linear regression models with cross validation (leave-one- subject-out and leave-one- task-out), we found that 1) filtering the accelerations and EMG signals improved their predictive power, 2) global signals (e.g., heart rate, electrodermal activity) were more sensitive to unknown subjects than tasks, while local signals (e.g., accelerations) were more sensitive to unknown tasks than subjects, and 3) good predictive performance was obtained combining a small number of signals (4–5) from multiple sensor modalities. NEW & NOTEWORTHY In this paper, we systematically compare a large set of physiological signals collected from portable sensors and determine which sensor signals contain the most salient information for predicting steady-state metabolic energy cost, robust to unknown subjects or tasks. This information, together with the comprehensive data set that is published in conjunction with this paper, will enable researchers and clinicians across many fields to develop novel algorithms to predict energy cost from wearable sensors.


2006 ◽  
Vol 31 (4) ◽  
pp. 281-293 ◽  
Author(s):  
Soon-Cheol Chung ◽  
Sunao Iwaki ◽  
Gye-Rae Tack ◽  
Jeong-Han Yi ◽  
Ji-Hye You ◽  
...  

2007 ◽  
Vol 31 (3) ◽  
pp. 270-278 ◽  
Author(s):  
David S. Weigle ◽  
Amelia Buben ◽  
Caitlin C. Burke ◽  
Nels D. Carroll ◽  
Brett M. Cook ◽  
...  

In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation. Here, teams of three to four students measured the maximal rate of oxygen uptake, cognitive function, hand and foot volume changes, reticulocyte count and hematocrit, urinary pH and 24-h urine volume, athletic performance, and nocturnal blood oxygen saturation. Their data allowed the students to quantify the effect of altitude on the oxygen cascade and to demonstrate the following altitude-related changes: 1) impaired performance on selected cognitive function tests, 2) mild peripheral edema, 3) rapid reticulocytosis, 4) urinary alkalinization and diuresis, 5) impaired aerobic but not anaerobic exercise performance, 6) inverse relationship between blood oxygen saturation and resting heart rate, and 7) regular periodic nocturnal oxygen desaturation events accompanied by heart rate accelerations. The students learned and applied basic statistical techniques to analyze their data, and each team summarized its results in the format of a scientific paper. The students were uniformly enthusiastic about the use of self-directed experimentation to explore the physiology of altitude adaptation and felt that they learned more from this course format than a control group of students felt that they learned from a physiology course taught by the same instructor in the standard classroom/laboratory format.


Sign in / Sign up

Export Citation Format

Share Document