3D LiDAR Extrinsic Calibration Method using Ground Plane Model Estimation

Author(s):  
M.A. Zaiter ◽  
R. Lherbier ◽  
G. Faour ◽  
O. Bazzi ◽  
J.C. Noyer
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2841
Author(s):  
Mohammad Ali Zaiter ◽  
Régis Lherbier ◽  
Ghaleb Faour ◽  
Oussama Bazzi ◽  
Jean-Charles Noyer

This paper details a new extrinsic calibration method for scanning laser rangefinder that is precisely focused on the geometrical ground plane-based estimation. This method is also efficient in the challenging experimental configuration of a high angle of inclination of the LiDAR. In this configuration, the calibration of the LiDAR sensor is a key problem that can be be found in various domains and in particular to guarantee the efficiency of ground surface object detection. The proposed extrinsic calibration method can be summarized by the following procedure steps: fitting ground plane, extrinsic parameters estimation (3D orientation angles and altitude), and extrinsic parameters optimization. Finally, the results are presented in terms of precision and robustness against the variation of LiDAR’s orientation and range accuracy, respectively, showing the stability and the accuracy of the proposed extrinsic calibration method, which was validated through numerical simulation and real data to prove the method performance.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 52 ◽  
Author(s):  
Eung-su Kim ◽  
Soon-Yong Park

This paper proposes a simple extrinsic calibration method for a multi-sensor system which consists of six image cameras and a 16-channel 3D LiDAR sensor using a planar chessboard. The six cameras are mounted on a specially designed hexagonal plate to capture omnidirectional images and the LiDAR sensor is mounted on the top of the plates to capture 3D points in 360 degrees. Considering each camera–LiDAR combination as an independent multi-sensor unit, the rotation and translation between the two sensor coordinates are calibrated. The 2D chessboard corners in the camera image are reprojected into 3D space to fit to a 3D plane with respect to the camera coordinate system. The corresponding 3D point data that scan the chessboard are used to fit to another 3D plane with respect to the LiDAR coordinate system. The rotation matrix is calculated by aligning normal vectors of the corresponding planes. In addition, an arbitrary point on the 3D camera plane is projected to a 3D point on the LiDAR plane, and the distance between the two points are iteratively minimized to estimate the translation matrix. At least three or more planes are used to find accurate external parameters between the coordinate systems. Finally, the estimated transformation is refined using the distance between all chessboard 3D points and the LiDAR plane. In the experiments, quantitative error analysis is done using a simulation tool and real test sequences are also used for calibration consistency analysis.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 48840-48849 ◽  
Author(s):  
Mun-Cheon Kang ◽  
Cheol-Hwan Yoo ◽  
Kwang-Hyun Uhm ◽  
Dae-Hong Lee ◽  
Sung-Jea Ko

2021 ◽  
pp. 443-452
Author(s):  
Jiaxin Luo ◽  
Wenhui Cui ◽  
Xiaorong Shen

2020 ◽  
Vol 12 (9) ◽  
pp. 1393 ◽  
Author(s):  
Andreas Krietemeyer ◽  
Hans van der Marel ◽  
Nick van de Giesen ◽  
Marie-Claire ten Veldhuis

The recent release of consumer-grade dual-frequency receivers sparked scientific interest into use of these cost-efficient devices for high precision positioning and tropospheric delay estimations. Previous analyses with low-cost single-frequency receivers showed promising results for the estimation of Zenith Tropospheric Delays (ZTDs). However, their application is limited by the need to account for the ionospheric delay. In this paper we investigate the potential of a low-cost dual-frequency receiver (U-blox ZED-F9P) in combination with a range of different quality antennas. We show that the receiver itself is very well capable of achieving high-quality ZTD estimations. The limiting factor is the quality of the receiving antenna. To improve the applicability of mass-market antennas, a relative antenna calibration is performed, and new absolute Antenna Exchange Format (ANTEX) entries are created using a geodetic antenna as base. The performance of ZTD estimation with the tested antennas is evaluated, with and without antenna Phase Center Variation (PCV) corrections, using Precise Point Positioning (PPP). Without applying PCVs for the low-cost antennas, the Root Mean Square Errors (RMSE) of the estimated ZTDs are between 15 mm and 24 mm. Using the newly generated PCVs, the RMSE is reduced significantly to about 4 mm, a level that is excellent for meteorological applications. The standard U-blox ANN-MB-00 patch antenna, with a circular ground plane, after correcting the phase pattern yields comparable results (0.47 mm bias and 4.02 mm RMSE) to those from geodetic quality antennas, providing an all-round low-cost solution. The relative antenna calibration method presented in this paper opens the way for wide-spread application of low-cost receiver and antennas.


2011 ◽  
Vol 230-232 ◽  
pp. 723-727 ◽  
Author(s):  
Bao Feng Zhang ◽  
Xiu Zhen Tian ◽  
Xiao Ling Zhang

In order to simplify previous camera calibration method, this paper put forward an easy camera calibration method based on plane grid points on the foundation of Heikkila plane model calibration method. Intrinsic and extrinsic parameters of the camera are calibrated with MATLAB, then the rotation matrix and the translation vector are calculated. The experiment results show this method is not only simple in practice, but also can meet the needs of computer vision systems.


Sign in / Sign up

Export Citation Format

Share Document