Detecting Time Synchronization Attacks in Cyber-Physical Systems with Machine Learning Techniques

Author(s):  
Jingxuan Wang ◽  
Wenting Tu ◽  
Lucas C.K. Hui ◽  
S.M. Yiu ◽  
Eric Ke Wang
2019 ◽  
Vol 3 (3) ◽  
pp. 49 ◽  
Author(s):  
Alberto Corredera ◽  
Marta Romero ◽  
Jose M. Moya

This article faces the challenge of discovering the trends in decision-making based on capturing emotional data and the influence of the possible external stimuli. We conducted an experiment with a significant sample of the workforce and used machine-learning techniques to model the decision-making process. We studied the trends introduced by the emotional status and the external stimulus that makes these personnel act or report to the supervisor. The main result of this study is the production of a model capable of predicting the bias to act in a specific context. We studied the relationship between emotions and the probability of acting or correcting the system. The main area of interest of these issues is the ability to influence in advance the personnel to make their work more efficient and productive. This would be a whole new line of research for the future.


2021 ◽  
Vol 11 (18) ◽  
pp. 8589
Author(s):  
José D. Martín-Guerrero ◽  
Lucas Lamata

Machine learning techniques provide a remarkable tool for advancing scientific research, and this area has significantly grown in the past few years. In particular, reinforcement learning, an approach that maximizes a (long-term) reward by means of the actions taken by an agent in a given environment, can allow one for optimizing scientific discovery in a variety of fields such as physics, chemistry, and biology. Morover, physical systems, in particular quantum systems, may allow one for more efficient reinforcement learning protocols. In this review, we describe recent results in the field of reinforcement learning and physics. We include standard reinforcement learning techniques in the computer science community for enhancing physics research, as well as the more recent and emerging area of quantum reinforcement learning, inside quantum machine learning, for improving reinforcement learning computations.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document