A novel design of frequency selective surface with low beam's aberration and insensitive to the beam waist radius of incidence wave in quasi-optical feed system

Author(s):  
X. Yao ◽  
M. Bai ◽  
J. Miao
Author(s):  
Amit Birwal ◽  
Sanjeev Singh ◽  
Binod Kumar Kanaujia

Abstract In this paper, a novel design of ultra-wide stop-band single-side single-layer frequency selective surface (FSS) is presented. The unit cell of the proposed FSS is designed using the combination of conventional square loop and cross (CSLC). To enhance the bandwidth of this structure, an additional cross is inserted in all the four quadrants of CSLC. The stop-band transmission bandwidth assuming −10 dB threshold is found to be 128.94% (2.16–10 GHz) which is 34.33% more as compared to the bandwidth of CSLC. The unit cell with a dimension of 16 × 16 mm2 is printed on one side of an FR4 substrate. The design is fabricated and the measured results are found to be in good agreement with the simulated results. The design provides excellent stability for both transverse magnetic and transverse electric polarizations. The design is very flexible, where any resonant frequency can be achieved by changing the length of unit cell. The design is useful in many applications such as antenna gain enhancement, electromagnetic wave shielding for Wi-Fi/5G systems, and other Internet of Things-based applications.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1938
Author(s):  
Jeong-Hyun Park ◽  
Jae-Gon Lee

In this paper, the novel design methodology of 2-D beam focusing control based on passive frequency selective surface (FSS) is proposed and described. The beam focusing antenna is composed of 1-D array source and 2-D FSS having a good transmittance and a full transmission phase variation of 360°. The 2-D FSS is designed to make the phase of wave radiated by one source be in-phase, so the transmission phase of the 2-D FSS is concave in itself. Then, the designed 2-D FSS is integrated to the 1-D array source and the longitudinal and the transverse beam focusing controls can be achieved by changing the phase shape of the array source. The relation between the focusing point and the phase combination of the sources is analyzed by a parabolic formula, and the performance of the beam focusing control system is confirmed by both simulation and measurement. From both results, it is concluded that the focusing spot can be tuned longitudinally and transversely by the proposed methodology at 5.8 GHz. In addition, the electric field intensity of 1-D array source with 2-D FSS increases by about 35% compared to that of only 1-D array source.


Author(s):  
Alfredo Gomes Neto ◽  
Jefferson Costa e Silva ◽  
Alexandre Jean Rene Serres ◽  
Marina de Oliveira Alencar ◽  
Ianes Barbosa Grecia Coutinho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document