Machine Learning Techniques for Depression Analysis on Social Media- Case Study on Bengali Community

Author(s):  
Debasish Bhattacharjee Victor ◽  
Jamil Kawsher ◽  
Md Shad Labib ◽  
Subhenur Latif
2021 ◽  
Vol 179 ◽  
pp. 821-828
Author(s):  
Andry Chowanda ◽  
Rhio Sutoyo ◽  
Meiliana ◽  
Sansiri Tanachutiwat

2021 ◽  
Author(s):  
Chinh Luu ◽  
Quynh Duy Bui ◽  
Romulus Costache ◽  
Luan Thanh Nguyen ◽  
Thu Thuy Nguyen ◽  
...  

2021 ◽  
pp. 1-67
Author(s):  
Stewart Smith ◽  
Olesya Zimina ◽  
Surender Manral ◽  
Michael Nickel

Seismic fault detection using machine learning techniques, in particular the convolution neural network (CNN), is becoming a widely accepted practice in the field of seismic interpretation. Machine learning algorithms are trained to mimic the capabilities of an experienced interpreter by recognizing patterns within seismic data and classifying them. Regardless of the method of seismic fault detection, interpretation or extraction of 3D fault representations from edge evidence or fault probability volumes is routine. Extracted fault representations are important to the understanding of the subsurface geology and are a critical input to upstream workflows including structural framework definition, static reservoir and petroleum system modeling, and well planning and de-risking activities. Efforts to automate the detection and extraction of geological features from seismic data have evolved in line with advances in computer algorithms, hardware, and machine learning techniques. We have developed an assisted fault interpretation workflow for seismic fault detection and extraction, demonstrated through a case study from the Groningen gas field of the Upper Permian, Dutch Rotliegend; a heavily faulted, subsalt gas field located onshore, NE Netherlands. Supervised using interpreter-led labeling, we apply a 2D multi-CNN to detect faults within a 3D pre-stack depth migrated seismic dataset. After prediction, we apply a geometric evaluation of predicted faults, using a principal component analysis (PCA) to produce geometric attribute representations (strike azimuth and planarity) of the fault prediction. Strike azimuth and planarity attributes are used to validate and automatically extract consistent 3D fault geometries, providing geological context to the interpreter and input to dependent workflows more efficiently.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2020 ◽  
pp. 193-201 ◽  
Author(s):  
Hayder A. Alatabi ◽  
Ayad R. Abbas

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.


Author(s):  
Rathimala Kannan ◽  
Intan Soraya Rosdi ◽  
Kannan Ramakrishna ◽  
Haziq Riza Abdul Rasid ◽  
Mohamed Haryz Izzudin Mohamed Rafy ◽  
...  

Data analytics is the essential component in deriving insights from data obtained from multiple sources. It represents the technology, methods and techniques used to obtain insights from massive datasets. As data increases, companies are looking for ways to gain relevant business insights underneath layers of data and information, to help them better understand new business ventures, opportunities, business trends and complex challenges. However, to date, while the extensive benefits of business data analytics to large organizations are widely published, micro, small, and medium sized organisations have not fully grasped the potential benefits to be gained from data analytics using machine learning techniques. This study is guided by the research question of how data analytics using machine learning techniques can benefit small businesses. Using the case study method, this paper outlines how small businesses in two different industries i.e. healthcare and retail can leverage data analytics and machine learning techniques to gain competitive advantage from the data. Details on the respective benefits gained by the small business owners featured in the two case studies provide important answers to the research question.


Sign in / Sign up

Export Citation Format

Share Document