Investigation of Stator Flux Linkage and Torque Predictive Algorithms in a Motor Direct Torque Control System

Author(s):  
Zhao Hongge ◽  
Fan Yinhai ◽  
Zhu Jingwei
Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


2015 ◽  
Vol 713-715 ◽  
pp. 814-819
Author(s):  
Li Ping Zhang ◽  
Xu Guang Xin ◽  
Wei Ya Wang ◽  
Hai Feng Wu

The direct torque control (DTC) system of the traditional asynchronous motor has many disadvantages, such as complex modeling and large amount of calculation, In order to improve the dynamic performance of the DTC system of the asynchronous motor, a direct torque control system is put forward. It uses space vector analysis method to calculate electromagnetic torque and stator flux linkage of asynchronous motor directly, follows the change of the stator flux linkage and torque, omits the complicated calculation, reduces the dependence on motor parameters. The simulation model of the DTC system of the asynchronous motor was established using SIMULINK software package. The feasibility of method is proved in theory, The results of simulation show that the modeling and simulation of the system has good static and dynamic performance, control precision of the system is higher, the stability is better.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5593
Author(s):  
Ting Yang ◽  
Takahiro Kawaguchi ◽  
Seiji Hashimoto ◽  
Wei Jiang

A switching sequence model predictive direct torque control (MPDTC) of IPMSMs for EVs in switch open-circuit fault-tolerant mode is studied in this paper. Instead of selecting one space vector from the possible four space vectors, the proposed MPDTC method selects an optimized switching sequence from two well-designed switching sequences, including three space vectors, according to a new designed cost function of which the control objectives have been transferred to the dq-axes components of the stator flux-linkage under the maximum-torque-per-ampere control. The calculation method of the durations of the adopted space vectors in the optimized switching sequence is studied to realize the stator flux-linkage reference tracking. In addition, the capacitor voltage balance method, by injecting a dc offset to the current of fault phase, is given. Compared with the conventional MPDTC method, the complicated weighting factors designing process is avoided and the electromagnetic torque ripples can be greatly suppressed. The experimental results prove the effectiveness and advantages of the proposed scheme.


2013 ◽  
Vol 313-314 ◽  
pp. 488-493
Author(s):  
Wei Zhao ◽  
Qiang Wang ◽  
Lu Yan Wang

In order to increase the accuracy and real-time of grey prediction fuzzy direct torque control system, an improved grey prediction fuzzy direct torque control method was advanced. The equal-dimensional new information model was used to construct the new grey prediction model. The position angle of motor stator flux was divided into sectors, by which the simplified fuzzy algorithm was obtained. The simulation results show that the improved method can greatly overcome the shortcomings caused by the original method, such as the overlarge dimensions of original time sequence and the decrease of effective information amount due to the lasting of time. The calculation quantity in prediction process is reduced. The precision of prediction and the real-time of fuzzy control system are increased. The instability of stator flux is lowered and the speed respond of motor is meliorated.


2011 ◽  
Vol 130-134 ◽  
pp. 2828-2831 ◽  
Author(s):  
Yan Ping Xu ◽  
Ke Guo ◽  
Yan Ru Zhong

A high-performance speed sensorless direct torque control (DTC) system of permanent magnet synchronous motor (PMSM) is presented in this paper. The stator flux linkage, speed, rotor position and load torque of PMSM are observed using a fourth-order Extended Kalman Filter (EKF) and a second-order Kalman Filter (KF) and the observed load torque is used for feed-forward compensation of reference torque. Simulation results clearly demonstrate the performance of speed can be improved when load torque is changed and the validity of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document