The Design and Simulation of AC Asynchronous Motor Direct Torque Control System

2015 ◽  
Vol 713-715 ◽  
pp. 814-819
Author(s):  
Li Ping Zhang ◽  
Xu Guang Xin ◽  
Wei Ya Wang ◽  
Hai Feng Wu

The direct torque control (DTC) system of the traditional asynchronous motor has many disadvantages, such as complex modeling and large amount of calculation, In order to improve the dynamic performance of the DTC system of the asynchronous motor, a direct torque control system is put forward. It uses space vector analysis method to calculate electromagnetic torque and stator flux linkage of asynchronous motor directly, follows the change of the stator flux linkage and torque, omits the complicated calculation, reduces the dependence on motor parameters. The simulation model of the DTC system of the asynchronous motor was established using SIMULINK software package. The feasibility of method is proved in theory, The results of simulation show that the modeling and simulation of the system has good static and dynamic performance, control precision of the system is higher, the stability is better.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


2013 ◽  
Vol 676 ◽  
pp. 209-212
Author(s):  
Lu Huan Shi ◽  
Yao Hui Li

In the electricity draws control system, the change of Low-velocity area of Rs will bring about a series of problem, especially the stator current and flux, will cause the distortion of the speed pulse vibration. The test discussed control scheme and optimization designs of asynchronous draw motors from exchange transmission electric locomotive operation characteristic demand. It adopts control strategy of neural network direct torque control (DTC) to control electricity draw the locomotive, to analyze the reacting of starting and sudden change of load, verifying this method may effectively improve the dynamic performance of the asynchronous motor, got up the very good inhibitory action to the low speed area torque pulsation. Thus the simulation results have proven the neural network DTC control strategy feasibility.


Author(s):  
Ali Najim Abdullah ◽  
Mohammed Hasan Ali

Direct torque control "DTC" technique is one of a high performance control system of an AC motor drive, which was proposed after the vector oriented control scheme during the resent 25 years. It has been developed rapidly for its concise system scheme, transient and dynamic performance. The DTC mechanism consists of voltage vector selection table, two hysteresis comparators and two estimators one for stator flux and another for electromagnetic torque. DTC is directly control torque and flux by using Voltage Source Inverter VSI, space vector and stator flux orientation and indirect speed regulated. A several control techniques can be used for improving the torque and flux performance. In this paper, the DTC with Proportional-Integral-Derivative (PID) controller used to improve the starting and dynamic performance of asynchronous motor AM, which gives good torque and flux response, best speed control and also minimize the unacceptable torque ripple. The mathematical model of DTC with PID controller of 3-phase induction motor IM are simulated under Matlab-Simulink. Therefore, the DTC based on PID controller has good performance of IM compared to classical DTC for starting, running state and also during change in load.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Dafang Wang ◽  
Zhenfei Hu ◽  
Cheng Zhu ◽  
Chuanwei Zhou ◽  
Yajing Xie

Voltage model is commonly used in direct torque control (DTC) for flux observing of asynchronous motor. In order to improve low-speed and dynamic performance of the voltage model, a modified low-pass filter (LPF) algorithm is proposed. Firstly, the tracking differentiator is brought in to modulate the measured stator current, which suppresses the measurement noise, and then amplitude and phase compensation is made towards the stator electromotive force (EMF), after which the stator flux is obtained through a low-pass filter. This method can eliminate the dynamic error of flux filtered by LPF and improve low-speed performance. Experimental results demonstrate effectiveness and improved dynamic performance of such method.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5593
Author(s):  
Ting Yang ◽  
Takahiro Kawaguchi ◽  
Seiji Hashimoto ◽  
Wei Jiang

A switching sequence model predictive direct torque control (MPDTC) of IPMSMs for EVs in switch open-circuit fault-tolerant mode is studied in this paper. Instead of selecting one space vector from the possible four space vectors, the proposed MPDTC method selects an optimized switching sequence from two well-designed switching sequences, including three space vectors, according to a new designed cost function of which the control objectives have been transferred to the dq-axes components of the stator flux-linkage under the maximum-torque-per-ampere control. The calculation method of the durations of the adopted space vectors in the optimized switching sequence is studied to realize the stator flux-linkage reference tracking. In addition, the capacitor voltage balance method, by injecting a dc offset to the current of fault phase, is given. Compared with the conventional MPDTC method, the complicated weighting factors designing process is avoided and the electromagnetic torque ripples can be greatly suppressed. The experimental results prove the effectiveness and advantages of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document