Application of Hybrid Classifier for Multi-class Classification of MRI Brain Tumor Images

Author(s):  
Gazi Jannatul Ferdous ◽  
Khaleda Akhter Sathi ◽  
Md. Azad Hossain
2021 ◽  
Vol 23 (11) ◽  
pp. 70-77
Author(s):  
M.R. Thiyagupriyadharsan ◽  
◽  
Dr.S. Suja ◽  

In the contemporary world, many dangerous disease which are affecting human beings and new pandemic disease is also raising alarm to have an effective health care system. In this aspect the technology plays a major role in improving and optimizing the health care system. The diagnostic is done by taking blood test, urine test, and medical imaging like X-ray, CT scan, Ultrasound scan and MRI scan system. Among these, the paper focus will be emphasized on MRI imaging in identifying the brain tumor using image processing. In the proposed work the fuzzy C means(FCM) algorithm along with firefly algorithm optimized support vector machine (SVM) are used to classify the MRI brain tumor images. The results of these works are compared using the performance metrics such as accuracy, sensitivity, specificity and precision. The proposed method gives best results for the classification of MRI brain tumor images.


2021 ◽  
Author(s):  
ANKIT GHOSH ◽  
ALOK KOLE

<p>The improvement of Artificial Intelligence (AI) and Machine Learning (ML) can help radiologists in tumor diagnostics without invasive measures. Magnetic resonance imaging (MRI) is a very useful method for diagnosis of tumors in human brain. In this paper, brain MRI images have been analyzed to detect the regions containing tumors and classify these regions into three different tumor categories: meningioma, glioma, and pituitary. This paper presents the implementation and comparison of various enhanced ML algorithms for the detection and classification of brain tumors. A brain tumor is the growth of abnormal cells in the human brain. Brain tumors can be cancerous or non-cancerous. Cancerous or malignant brain tumors can be life threatening. Hence, detection and classification of brain tumors at an early stage is extremely important. In this paper, enhanced ML algorithms have been implemented to predict the presence or the absence of brain tumors using binary classification and to predict whether a patient has brain tumor or not and if he does, detect the type of brain tumor using multi-class classification. The dataset that has been used to perform the binary classification task comprises of two types of brain MRI images with tumor and without tumor. Here nine ML algorithms namely, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), Naïve Bayes (NB), Decision Tree (DT) classifier, Random Forest classifier, XGBoost classifier, Stochastic Gradient Descent (SGD) classifier and Gradient Boosting classifier have been used to classify the MRI images. A comparative analysis of the ML algorithms has been performed based on a few performance metrics such as accuracy, recall, and precision, F1-score, AUC-ROC curve and AUC-PR curve. Gradient Boosting classifier has outperformed all the other algorithms with an accuracy of 92.4%, recall of 94.4%, precision of 85%, F1-score of 89.5%, AUC-ROC of 97.2% and an AUC-PR of 91.4%. To address the multi-class classification problem, four ML algorithms namely, SVM, KNN, Random Forest classifier and XGBoost classifier have been employed. In this case, the dataset that has been used consists of four types of brain MRI images with glioma tumor, meningioma tumor, and pituitary tumor and with no tumor. The performances of the ML algorithms have been compared based on accuracy, recall, precision and the F1-score. XGBoost classifier has surpassed all the other algorithms in terms of accuracy, precision, recall and F1-score. XGBoost has produced an accuracy of 90%, precision of 90%, and recall of 90% and F1-score of 90%.</p>


Classification of brain tumor for medical applications is considered as an important constraint in computer-aided diagnosis (CAD). In this paper, we study the classification of brain tumor by considering the constraint as a classification problem in order to segregate the tumors among pituitary tumors, gliomatumorand meningioma tumor. This method adopts deep learning principle to extract the brain features from the MRI images. In this study, Recurrent Neural Network is used to classify the extracted features from brain. The experiments are carried out in terms of three fold crossvalidation process over MRI brain image dataset. The results show that the proposed RNN classifier classifies the brain tumors effectively with 98% of mean classification accuracy than other existing methods.


2018 ◽  
Vol 7 (1) ◽  
pp. 140
Author(s):  
Nikita Singh ◽  
Naveen Choudhary

Currently, the radiologist needs to distinguish the medical imaging with their multiple classes. In this paper, we work on several steps: segmented ROI, feature extraction of ROI and classification. In this work, we proposed a multiclass kernel based Hellinger decision method HD-Tree and HD-Forest for the classification of brain tumor classes with respect to classification time and accuracy. The calculated features like patient symptoms, centroid, shape, etc. are used in the classification scheme. Total 97 MRI brain tumor images (Astrocytoma (22), Ganglioglioma (6), Glioblastoma (23), Epidermoid (3), Mixed Glioma (5) and Meningnet (41)) were used for the experiment. The Experimental result shows that kernel-based Hellinger HD-Tree was found to be 96.50 % of accuracy and HD-Forest was found to be 99.9%. In this paper, we compare our proposed method LA-SVM method. LA-SVM was found to be 96% of accuracy. We can see that HD-forest gives the best accuracy result.


Sign in / Sign up

Export Citation Format

Share Document