Uber Related Data Analysis using Machine Learning

Author(s):  
Rishi Srinivas ◽  
B. Ankayarkanni ◽  
R. Sathya Bama Krishna
2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2020 ◽  
Vol 13 (5) ◽  
pp. 1020-1030
Author(s):  
Pradeep S. ◽  
Jagadish S. Kallimani

Background: With the advent of data analysis and machine learning, there is a growing impetus of analyzing and generating models on historic data. The data comes in numerous forms and shapes with an abundance of challenges. The most sorted form of data for analysis is the numerical data. With the plethora of algorithms and tools it is quite manageable to deal with such data. Another form of data is of categorical nature, which is subdivided into, ordinal (order wise) and nominal (number wise). This data can be broadly classified as Sequential and Non-Sequential. Sequential data analysis is easier to preprocess using algorithms. Objective: The challenge of applying machine learning algorithms on categorical data of nonsequential nature is dealt in this paper. Methods: Upon implementing several data analysis algorithms on such data, we end up getting a biased result, which makes it impossible to generate a reliable predictive model. In this paper, we will address this problem by walking through a handful of techniques which during our research helped us in dealing with a large categorical data of non-sequential nature. In subsequent sections, we will discuss the possible implementable solutions and shortfalls of these techniques. Results: The methods are applied to sample datasets available in public domain and the results with respect to accuracy of classification are satisfactory. Conclusion: The best pre-processing technique we observed in our research is one hot encoding, which facilitates breaking down the categorical features into binary and feeding it into an Algorithm to predict the outcome. The example that we took is not abstract but it is a real – time production services dataset, which had many complex variations of categorical features. Our Future work includes creating a robust model on such data and deploying it into industry standard applications.


Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 71
Author(s):  
Gonçalo Carnaz ◽  
Mário Antunes ◽  
Vitor Beires Nogueira

Criminal investigations collect and analyze the facts related to a crime, from which the investigators can deduce evidence to be used in court. It is a multidisciplinary and applied science, which includes interviews, interrogations, evidence collection, preservation of the chain of custody, and other methods and techniques of investigation. These techniques produce both digital and paper documents that have to be carefully analyzed to identify correlations and interactions among suspects, places, license plates, and other entities that are mentioned in the investigation. The computerized processing of these documents is a helping hand to the criminal investigation, as it allows the automatic identification of entities and their relations, being some of which difficult to identify manually. There exists a wide set of dedicated tools, but they have a major limitation: they are unable to process criminal reports in the Portuguese language, as an annotated corpus for that purpose does not exist. This paper presents an annotated corpus, composed of a collection of anonymized crime-related documents, which were extracted from official and open sources. The dataset was produced as the result of an exploratory initiative to collect crime-related data from websites and conditioned-access police reports. The dataset was evaluated and a mean precision of 0.808, recall of 0.722, and F1-score of 0.733 were obtained with the classification of the annotated named-entities present in the crime-related documents. This corpus can be employed to benchmark Machine Learning (ML) and Natural Language Processing (NLP) methods and tools to detect and correlate entities in the documents. Some examples are sentence detection, named-entity recognition, and identification of terms related to the criminal domain.


2021 ◽  
Vol 200 ◽  
pp. 108377
Author(s):  
Bing Kong ◽  
Zhuoheng Chen ◽  
Shengnan Chen ◽  
Tianjie Qin

2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Bjarne Pfitzner ◽  
Nico Steckhan ◽  
Bert Arnrich

Data privacy is a very important issue. Especially in fields like medicine, it is paramount to abide by the existing privacy regulations to preserve patients’ anonymity. However, data is required for research and training machine learning models that could help gain insight into complex correlations or personalised treatments that may otherwise stay undiscovered. Those models generally scale with the amount of data available, but the current situation often prohibits building large databases across sites. So it would be beneficial to be able to combine similar or related data from different sites all over the world while still preserving data privacy. Federated learning has been proposed as a solution for this, because it relies on the sharing of machine learning models, instead of the raw data itself. That means private data never leaves the site or device it was collected on. Federated learning is an emerging research area, and many domains have been identified for the application of those methods. This systematic literature review provides an extensive look at the concept of and research into federated learning and its applicability for confidential healthcare datasets.


Sign in / Sign up

Export Citation Format

Share Document