oxidative stress injury
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 104)

H-INDEX

27
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Yue Ren ◽  
Yanan Liu ◽  
Kaiyang Liu ◽  
Xiaoqian Huo ◽  
Chaoqun Liu ◽  
...  

The pathogenesis of diabetic retinopathy (DR) is complicated, and there is no effective drug. Oxidative stress-induced human retinal microvascular endothelial cells (HRMECs) injury is one of the pathogenic factors for DR. Molecular switches are considered high-risk targets in disease progression. Identification of molecular switch is crucial to interpret the pathogenesis of disease and screen effective ingredients. In this study, a systematic process was executed to discover therapeutic candidates for DR based on HRMECs injury. First of all, the molecular mechanism of HRMECs oxidative stress injury was revealed by transcriptomics and network pharmacology. We found that oxidative stress was one of the pivotal pathogenic factors, which interfered with vascular system development, inflammation, cell adhesion, and cytoskeleton damaged HRMECs through crosstalk. Then, network topology analysis was used to recognize molecular switches. The results indicated that the Keap1-Nrf2-ARE signaling pathway was the molecular switch in HRMECs oxidative stress injury. On this basis, the HEK293-ARE overexpression cell line was applied to obtain 18 active traditional Chinese medicine (TCM) ingredients. Furthermore, andrographolide, one of the 18 candidates, was applied in the HRMECs oxidative stress model to evaluate the accuracy of the systematic process. The efficacy evaluation results showed that andrographolide could regulate oxidative stress, vascular system development, inflammation, adhesion, and skeleton tissue to inhibit HRMECs injury cooperatively. And its mechanism was related to the Nrf2 signaling pathway. Overall, our data suggest that the Nrf2 signaling pathway is the molecular switch in the HRMECs oxidative stress injury. 18 potential Nrf2 agonists are likely to be promising DR candidates.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Peng Liu ◽  
Quanli Pan

Background. Chronic heart failure (CHF) is a serious heart disease resulting from cardiac dysfunction. Oxidative stress is an important factor in aging and disease. Butein, however, has antioxidant properties. To determine the effect of butein on oxidative stress injury in rats, a CHF rat model was established. Methods. The CHF rat model was induced by abdominal aortic coarctation (AAC). Rats in CHF+butein and sham+butein group were given 100 mg/kg butein via gavage every day to detect the effect of butein on oxidative stress injury and myocardial dysfunction. The cardiac structural and functional parameters, including the left ventricular end-systolic dimension (LVESD), the left ventricular end-diastolic dimension (LVEDD), the left ventricular ejection fraction (LVEF), and the left ventricular fractional shortening (LVFS), were measured. Oxidative stress was measured through the production of reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA). Cardiac injury markers like creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) were evaluated. Hematoxylin and eosin (H&E) staining was used to observe the myocardial cell morphology. The effect of butein on the extracellular signal-regulated kinase (ERK)/nuclear factor-E2 p45-related factor (Nrf2) signaling was confirmed by Western blot analysis. Results. Butein had a significant effect on CHF in animal models. In detail, butein inhibited oxidative stress, relieved cardiac injury, and alleviated myocardial dysfunction. Importantly, butein activated the ERK1/2 pathway, which contributed to Nrf2 activation and subsequent heme oxygenase-1 (HO-1) and glutathione cysteine ligase regulatory subunit (GCLC) induction. Conclusions. In this study, butein inhibits oxidative stress injury in CHF rat model via ERK/Nrf2 signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengru Ding ◽  
Zhiyan Tang ◽  
Wei Liu ◽  
Taili Shao ◽  
Pingchuan Yuan ◽  
...  

Hyperglycemia-induced apoptosis and oxidative stress injury are thought to play important roles in the pathogenesis of diabetic nephropathy (DN). Attenuating high glucose (HG)-induced renal tubular epithelial cell injury has become a potential approach to ameliorate DN. In recent years, burdock fructooligosaccharide (BFO), a water-soluble inulin-type fructooligosaccharide extracted from burdock root, has been shown to have a wide range of pharmacological activities, including antiviral, anti-inflammatory, and hypolipidemic activities. However, the role and mechanism of BFO in rat renal tubular epithelial cells (NRK-52E cells) have rarely been investigated. The present study investigated the protective effect of BFO on HG-induced damage in NRK-52E cells. BFO could protect NRK-52E cells against the reduced cell viability and significantly increased apoptosis rate induced by HG. These anti-oxidative stress effects of BFO were related to the significant inhibition of the production of reactive oxygen species, stabilization of mitochondrial membrane potential, and increased antioxidant (superoxide dismutase and catalase) activities. Furthermore, BFO increased the expression of Nrf2, HO-1, and Bcl-2 and decreased the expression of Bax. In conclusion, these findings suggest that BFO protects NRK-52E cells against HG-induced damage by inhibiting apoptosis and oxidative stress through the Nrf2/HO-1 signaling pathway.


2021 ◽  
Author(s):  
Yuying Tan ◽  
Jiali Qiu ◽  
Weiqi Zhang ◽  
Yan Xie ◽  
Chiyi Chen ◽  
...  

Mesenchymal stem cells (MSCs) have great prospects for the treatment of ischemia-reperfusion injury (IRI) after liver transplantation. At this stage, the main factor limiting MSCs in the treatment of fatty liver IRI of the donor liver is the residence time of stem cells at the site of inflammatory injury. This study investigated whether bone marrow mesenchymal stem cells (BMSCs) stimulated by tumor necrosis factor-α (TNF-α) can promote the repair of fatty liver cell oxidative stress injury and fatty liver IRI in rats. The results indicated the BMSCs treatment group stimulated by TNF-α had lower indexes and significantly improved oxidative stress damage in vitro through Transwell chamber co-culture experiment, compared with the control group. In vivo, compared with the PBS group and the BMSCs group, the indexes of the BMSCs treatment group stimulated by TNF-α were reduced, and the degree of tissue damage was significantly reduced. BMSCs can repair fatty liver cell oxidative stress injury and fatty liver IRI, however, BMSCs stimulated by TNF-α can promote the repair of tissues and cells.


Sign in / Sign up

Export Citation Format

Share Document