A Comparative Analysis of Algorithmic Music Generation on GPUs and FPGAs

Author(s):  
Garvit Joshi ◽  
Vidya Nyayapati ◽  
Jasvinder Singh ◽  
Aishwarya Karmarkar
2021 ◽  
pp. 1-13
Author(s):  
Omar Lopez-Rincon ◽  
Oleg Starostenko ◽  
Alejandro Lopez-Rincon

Algorithmic music composition has recently become an area of prestigious research in projects such as Google’s Magenta, Aiva, and Sony’s CSL Lab aiming to increase the composers’ tools for creativity. There are advances in systems for music feature extraction and generation of harmonies with short-time and long-time patterns of music style, genre, and motif. However, there are still challenges in the creation of poly-instrumental and polyphonic music, pieces become repetitive and sometimes these systems copy the original files. The main contribution of this paper is related to the improvement of generating new non-plagiary harmonic developments constructed from the symbolic abstraction from MIDI music non-labeled data with controlled selection of rhythmic features based on evolutionary techniques. Particularly, a novel approach for generating new music compositions by replacing existing harmony descriptors in a MIDI file with new harmonic features from another MIDI file selected by a genetic algorithm. This allows combining newly created harmony with a rhythm of another composition guaranteeing the adjustment of a new music piece to a distinctive genre with regularity and consistency. The performance of the proposed approach has been assessed using artificial intelligent computational tests, which assure goodness of the extracted features and shows its quality and competitiveness.


Author(s):  
Abigail Wiafe ◽  
Pasi Fränti

Affective algorithmic composition systems are emotionally intelligent automatic music generation systems that explore the current emotions or mood of a listener and compose an affective music to alter the person's mood to a predetermined one. The fusion of affective algorithmic composition systems and smart spaces have been identified to be beneficial. For instance, studies have shown that they can be used for therapeutic purposes. Amidst these benefits, research on its related security and ethical issues is lacking. This chapter therefore seeks to provoke discussion on security and ethical implications of using affective algorithmic compositions systems in smart spaces. It presents issues such as impersonation, eavesdropping, data tempering, malicious codes, and denial-of-service attacks associated with affective algorithmic composition systems. It also discusses some ethical implications relating to intensions, harm, and possible conflicts that users of such systems may experience.


Author(s):  
Alvaro E. Lopez Duarte

In this article, I review the concept of algorithmic generative and interactive music and discuss the advantages and challenges of its implementation in videogames. Excessive repetition caused by low interactivity in music sequences through gameplay has been tackled primarily by using random or sequential containers, coupled with overlapping rules and adaptive mix parameters, as demonstrated in the Dynamic Music Units in Audiokinetic’s Wwise middleware. This approach provides a higher variety through re-combinatorial properties of music tracks and also a responsive and interactive music stream. However, it mainly uses prerecorded music sequences that reappear and are easy to recognize throughout gameplay. Generative principles such as single-seed design have been occasionally applied in game music scoring to generate material. Some of them are complemented with rules and are assigned to sections with low emotional requirements, but support for real-time interaction in gameplay situations, although desirable, is rarely found.While algorithmic note-by-note generation can offer interactive flexibility and infinite diversity, it poses significant challenges such as achieving human-like performativity and producing a distinctive narrative style through measurable parameters or program arguments. Starting with music generation, I examine conceptual implementations and technical challenges of algorithmic composition studies that use Markov models, a-life/evolutionary music, generative grammars, agents, and artificial neural networks/deep learning. For each model, I evaluate rule-based strategies for interactive music transformation using parameters provided by contextual gameplay situations. Finally, I propose a compositional tool design based in modular instances of algorithmic music generation, featuring stylistic interactive control in connection with an audio engine rendering system.


2007 ◽  
Vol 177 (4S) ◽  
pp. 398-398
Author(s):  
Luis H. Braga ◽  
Joao L. Pippi Salle ◽  
Sumit Dave ◽  
Sean Skeldon ◽  
Armando J. Lorenzo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document