Experimental Investigation of Micro-Aerial Vehicle Wing Designs

Author(s):  
An-Yu Hsu ◽  
Kerwin Wang
2019 ◽  
Vol 92 (2) ◽  
pp. 139-144
Author(s):  
Syam Narayanan S. ◽  
Asad Ahmed R. ◽  
Jijo Philip Varghese ◽  
Gopinath S. ◽  
Jedidiah Paulraj ◽  
...  

Purpose The purpose of this paper is to experimentally analyze the effect of wing shape of various insects of different species in a flapping micro aerial vehicle (MAV). Design/methodology/approach Six different wings are fabricated for the MAV configuration, which is restricted to the size of 15 cm length and width; all wings have different surface area and constant span length of 6 cm. The force is being measured with the help of a force-sensing resistor (FSR), and the coefficients of lift were calculated and compared. Findings This study shows that the wing “Tipula sp” has better value of lift than other insect wings, except for the negative angle of attacks. The wing “Aeshna multicolor” gives the better values of lift in negative angles of attack. Practical implications This paper lays the foundation for the development of flapping MAVs with the insect wings. This type of wing can be used for spying purpose in the military zone and also can be used to survey remote and dangerous places where humans cannot enter. Originality/value This paper covers all basic insect wing configurations of different species with exact mimics of the veins. As the experimental investigation was carried for different angle of attacks, velocities and flapping frequencies, this paper can be used as reference for future flapping wing MAV developers.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 179626-179647
Author(s):  
Taimur Ali Shams ◽  
Syed Irtiza Ali Shah ◽  
Aamer Shahzad ◽  
Ali Javed ◽  
Kashif Mehmod

2012 ◽  
Author(s):  
James Joo ◽  
Gregory Reich ◽  
James Elgersma ◽  
Kristopher Aber

Author(s):  
Jinwoo Jeon ◽  
Sungwook Jung ◽  
Eungchang Lee ◽  
Duckyu Choi ◽  
Hyun Myung

2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


Sign in / Sign up

Export Citation Format

Share Document