Particle filter for state and parameter estimation in passive ranging

Author(s):  
Wan-ping Wang ◽  
Sheng Liao ◽  
Ting-wen Xing
Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 606
Author(s):  
Alaa Jamal ◽  
Raphael Linker

Particle filter has received increasing attention in data assimilation for estimating model states and parameters in cases of non-linear and non-Gaussian dynamic processes. Various modifications of the original particle filter have been suggested in the literature, including integrating particle filter with Markov Chain Monte Carlo (PF-MCMC) and, later, using genetic algorithm evolutionary operators as part of the state updating process. In this work, a modified genetic-based PF-MCMC approach for estimating the states and parameters simultaneously and without assuming Gaussian distribution for priors is presented. The method was tested on two simulation examples on the basis of the crop model AquaCrop-OS. In the first example, the method was compared to a PF-MCMC method in which states and parameters are updated sequentially and genetic operators are used only for state adjustments. The influence of ensemble size, measurement noise, and mutation and crossover parameters were also investigated. Accurate and stable estimations of the model states were obtained in all cases. Parameter estimation was more challenging than state estimation and not all parameters converged to their true value, especially when the parameter value had little influence on the measured variables. Overall, the proposed method showed more accurate and consistent parameter estimation than the PF-MCMC with sequential estimation, which showed highly conservative behavior. The superiority of the proposed method was more pronounced when the ensemble included a large number of particles and the measurement noise was low.


2018 ◽  
Vol 25 (4) ◽  
pp. 731-746 ◽  
Author(s):  
Sangeetika Ruchi ◽  
Svetlana Dubinkina

Abstract. Over the years data assimilation methods have been developed to obtain estimations of uncertain model parameters by taking into account a few observations of a model state. The most reliable Markov chain Monte Carlo (MCMC) methods are computationally expensive. Sequential ensemble methods such as ensemble Kalman filters and particle filters provide a favorable alternative. However, ensemble Kalman filter has an assumption of Gaussianity. Ensemble transform particle filter does not have this assumption and has proven to be highly beneficial for an initial condition estimation and a small number of parameter estimations in chaotic dynamical systems with non-Gaussian distributions. In this paper we employ ensemble transform particle filter (ETPF) and ensemble transform Kalman filter (ETKF) for parameter estimation in nonlinear problems with 1, 5, and 2500 uncertain parameters and compare them to importance sampling (IS). The large number of uncertain parameters is of particular interest for subsurface reservoir modeling as it allows us to parameterize permeability on the grid. We prove that the updated parameters obtained by ETPF lie within the range of an initial ensemble, which is not the case for ETKF. We examine the performance of ETPF and ETKF in a twin experiment setup, where observations of pressure are synthetically created based on the known values of parameters. For a small number of uncertain parameters (one and five) ETPF performs comparably to ETKF in terms of the mean estimation. For a large number of uncertain parameters (2500) ETKF is robust with respect to the initial ensemble, while ETPF is sensitive due to sampling error. Moreover, for the high-dimensional test problem ETPF gives an increase in the root mean square error after data assimilation is performed. This is resolved by applying distance-based localization, which however deteriorates a posterior estimation of the leading mode by largely increasing the variance due to a combination of less varying localized weights, not keeping the imposed bounds on the modes via the Karhunen–Loeve expansion, and the main variability explained by the leading mode. A possible remedy is instead of applying localization to use only leading modes that are well estimated by ETPF, which demands knowledge of which mode to truncate.


2011 ◽  
Vol 399 (3-4) ◽  
pp. 410-421 ◽  
Author(s):  
Carsten Montzka ◽  
Hamid Moradkhani ◽  
Lutz Weihermüller ◽  
Harrie-Jan Hendricks Franssen ◽  
Morton Canty ◽  
...  

2018 ◽  
Author(s):  
Mingxu Hu ◽  
Hongkun Yu ◽  
Kai Gu ◽  
Kunpeng Wang ◽  
Siyuan Ren ◽  
...  

AbstractElectron cryo-microscopy (cryoEM) is now a powerful tool in determining atomic structures of biological macromolecules under nearly natural conditions. The major task of single-particle cryoEM is to estimate a set of parameters for each input particle image to reconstruct the three-dimensional structure of the macromolecules. As future large-scale applications require increasingly higher resolution and automation, robust high-dimensional parameter estimation algorithms need to be developed in the presence of various image qualities. In this paper, we introduced a particle-filter algorithm for cryoEM, which was a sequential Monte Carlo method for robust and fast high-dimensional parameter estimation. The cryoEM parameter estimation problem was described by a probability density function of the estimated parameters. The particle filter uses a set of random and weighted support points to represent such a probability density function. The statistical properties of the support points not only enhance the parameter estimation with self-adaptive accuracy but also provide the belief of estimated parameters, which is essential for the reconstruction phase. The implementation of these features showed strong tolerance to bad particles and enabled robust defocus refinement, demonstrated by the remarkable resolution improvement at the atomic level.


Sign in / Sign up

Export Citation Format

Share Document