Leakage model and failure factors analysis of mechanical seals

Author(s):  
Xuemeng Zhang ◽  
Jian Shi ◽  
Shaoping Wang ◽  
Chao Zhang ◽  
Mileta Tomovic
Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Xingya Ni ◽  
Chenbo Ma ◽  
Jianjun Sun ◽  
Yuyan Zhang ◽  
Qiuping Yu

A theoretical model for calculating the leakage rate of contact mechanical seals based on the fractal theory of the porous media, which can consider the real seal contact interface and objectively reflect the flow of the interfacial fluid from a microscopic perspective, is established. In order to obtain the microstructural parameters of the porous media included in the leakage model, such as the fractal dimension and the maximum pore diameter, the real seal contact interface obtained from experiments is reconstructed, a contact model between the dynamic and static rings is proposed, and then the calculation methods for the interface characteristic parameters are provided. Numerical simulation results show that as the contact pressure increases from 0.05 to 0.5 MPa, the interface porosity and the maximum pore diameter decreases gradually. Furthermore, the fractal dimension of the pore area increases and the leakage rate of the interface decreases from 0.48 to 0.33 mL/h. The proposed method provides a novel way of calculating the leakage rate of contact mechanical seals.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1338
Author(s):  
Guangyao Bei ◽  
Chenbo Ma ◽  
Jianjun Sun ◽  
Xingya Ni ◽  
Yafei Ma

The fluid leakage channel found in contact mechanical seals belongs to the microchannel category. Thus, upon further inspection, the influence of surface wettability and other factors neglected in previous studies becomes obvious. The porous leakage model of contact mechanical seals considering the surface wettability presented in this paper was based on the Cassie model and slip theory. The variations of the microchannel slip length and the velocity under various wettability conditions were studied and the relationship between the slip length and the apparent contact angle was established. Moreover, using porous media theory, the theoretical model of the leakage rate in contact mechanical seals considers the surface wettability depending on various parameters. The observed parameters included the surface contact angle, sealing medium pressure, viscosity coefficient, fractal dimension, and maximum pore diameter. The simulation results obtained using the proposed model have shown that the leakage rate increases with the increase of the apparent contact angle. Particularly when the contact pressure is small, the influence of the surface wettability is more significant. Furthermore, the leakage rate results obtained via the proposed model were compared to those of existing models. The comparison confirmed that the proposed model is applicable and that the necessity of considering wettability significantly affects the leakage rate calculation accuracy. The proposed model lays a foundation for further improving the calculation accuracy, making it easier for both the researchers and practitioners to suppress the leakage in contact mechanical seals.


2022 ◽  
Vol 5 (1) ◽  
pp. 89-98
Author(s):  
Mehmet Kaptan ◽  
Özkan Uğurlu

In recent years, maritime-related organizations and companies have moved to a risk-based approach. To determine the risks, it is necessary to understand comprehensively why accidents occur and how it develops. The most effective measures need to be identified to implement the accident prevention measures successfully. According to the results of scientific studies conducted in the past, 80% of human factors risks were effective in marine accidents. Nowadays, maritime technologies are the most effective method for reducing the risks of human factors. However, the use of electronic navigation devices has not eliminated accidents. In this study, the accident reports for collision and grounding due to the electronic navigation devices' risk was evaluated using Human Factors Analysis and Classification System (HFACS) method. As a result of the study, more than half of the visible (active) causes of accidents have been identified as operating failure factors in electronic navigation equipment. Recommendations to prevent the occurrence of accident factors have been made.


2016 ◽  
Vol 6 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Isaac Munene

Abstract. The Human Factors Analysis and Classification System (HFACS) methodology was applied to accident reports from three African countries: Kenya, Nigeria, and South Africa. In all, 55 of 72 finalized reports for accidents occurring between 2000 and 2014 were analyzed. In most of the accidents, one or more human factors contributed to the accident. Skill-based errors (56.4%), the physical environment (36.4%), and violations (20%) were the most common causal factors in the accidents. Decision errors comprised 18.2%, while perceptual errors and crew resource management accounted for 10.9%. The results were consistent with previous industry observations: Over 70% of aviation accidents have human factor causes. Adverse weather was seen to be a common secondary casual factor. Changes in flight training and risk management methods may alleviate the high number of accidents in Africa.


2019 ◽  
Author(s):  
Giuliana Frasson ◽  
Diego Cazzador ◽  
Filippo Perozzo ◽  
Giuseppe Rolma ◽  
Sara Munari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document