Lyapunov Based Current Control Scheme for Grid-Connected Inverter

Author(s):  
Wei Zhang ◽  
Hongpeng Liu
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2051
Author(s):  
Thuy Vi Tran ◽  
Kyeong-Hwa Kim

A high reliability of a grid-connected inverter (GCI) system at reasonable cost is a critical requirement for maximizing renewable energy potential in the electrical energy market. Several grid voltage sensorless control approaches have been investigated not only to eliminate the vulnerability of faulty sensors but also to further reduce the GCI commercial price. In this paper, a frequency adaptive integral-resonant full-state feedback current control scheme with the facilitation of a full-state observer is adopted for a grid-connected inductive–capacitive–inductive (LCL) filtered inverter without sensing the grid voltages. The proposed scheme actively damps the filter resonance and ensures the robustness of the inverter system against unexpected severe grid conditions with low cost and simplified hardware construction. The synchronization of the inverter with the main grid is accomplished by the proposed current controller-based grid voltage estimator, in which the grid frequency and phase angle can be detected effectively. In addition, the actual grid voltages are precisely regenerated to ensure the stable performance of the full-state observer. A safe start-up procedure is also presented for the grid voltage sensorless control of the LCL-filtered inverter to avoid a critical overcurrent and long settling time during the start-up instant, offering a stable and reliable inverter system operation with low computational burden. The effectiveness and feasibility of the proposed voltage sensorless current control scheme are validated by the simulation and experimental results under non-ideal grid conditions such as the harmonic distortion, grid frequency variation, and sudden grid phase angle jump.


2013 ◽  
Vol 765-767 ◽  
pp. 2498-2502
Author(s):  
Yong Yang ◽  
Chun Qing Qi ◽  
Ji Suo ◽  
Feng Wen Cao

The paper proposes a new control of a transformerless singe-stage single-phase grid-connected inverter in photovoltaic generation systems. The control scheme is mainly based on voltage-oriented control (VOC) with help of second order Generalized Integrator (SOGI). A cascaded control structure with an outer dc link voltage control loop and an inner current control loop is used. The currents are controlled in a synchronous dq reference frame using a decoupled feedback control. The simulated results have proven an excellent performance and verified the validity of proposed system.


2021 ◽  
Vol 11 (14) ◽  
pp. 6256
Author(s):  
Mohamad Amin Ghasemi ◽  
Seyed Fariborz Zarei ◽  
Saeed Peyghami ◽  
Frede Blaabjerg

This paper proposes a nonlinear decoupled current control scheme for a grid-connected inverter with LCL filter. Decoupling the active and reactive current control channels is one of the main demands in the control of inverters. For inverters with an L filter, the decoupling can be achieved by a proper feed-forward of grid voltages. However, the coupling of channels is a complex issue for converters with LCL filters. The resonance mode of the LCL filter may cause instability, which adds more complexity to the analysis. In this paper, state equations of the system are provided, which highlight the coupling between active and reactive currents injected into the grid. Accordingly, a non-linear control scheme is proposed which effectively decouples the channels and dampens the resonant modes of the LCL filter. The stability of the proposed control method is verified by the Lyapunov criterion. Independency of the system stability to the grid-impedance is another feature of the proposed approach. Moreover, only grid-side currents are needed for implementation of the proposed scheme, avoiding the need for additional current sensors for the output capacitor and grid-side inductor. For accurate modelling of the inverter, the computation and PWM sampling delays are included in the controller design. Finally, various case studies are provided that verify the performance of the proposed approach and the stability of the system.


2012 ◽  
Vol 614-615 ◽  
pp. 1578-1582
Author(s):  
Chun Qing Qi ◽  
Yi Ruan ◽  
Feng Wen Cao

This paper proposes a control strategy,based on the grid voltage oriented vector control (VOC), which makes three-phase inverter control the active and reactive power of grid-connected inverter under the premise of the direct current control. This paper analyzes the principle of three phase photovoltaic grid connected inverter and describes the control structure of the inverter. The control strategy can overcome the deficiencies of the indirect current control scheme. This paper designs the current closed-loop control system, which not only improve the system dynamic response speed and output current waveform quality, while also reduce its sensitivity to parameter changes to improve the robustness of the system. The simulation results show the validity of control strategy proposed.


Sign in / Sign up

Export Citation Format

Share Document