scholarly journals Contribution of Additive Manufacturing Systems to Supply Chain

Author(s):  
Satya Shah ◽  
Stefano Mattiuzza ◽  
Elmira Naghi Ganji ◽  
Alec Coutroubis
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Author(s):  
Ardeshir Raihanian Mashhadi ◽  
Sara Behdad

Complexity has been one of the focal points of attention in the supply chain management domain, as it deteriorates the performance of the supply chain and makes controlling it problematic. The complexity of supply chains has been significantly increased over the past couple of decades. Meanwhile, Additive Manufacturing (AM) not only revolutionizes the way that the products are made, but also brings a paradigm shift to the whole production system. The influence of AM extends to product design and supply chain as well. The unique capabilities of AM suggest that this manufacturing method can significantly affect the supply chain complexity. More product complexity and demand heterogeneity, faster production cycles, higher levels of automation and shorter supply paths are among the features of additive manufacturing that can directly influence the supply chain complexity. Comparison of additive manufacturing supply chain complexity to its traditional counterpart requires a profound comprehension of the transformative effects of AM on the supply chain. This paper first extracts the possible effects of AM on the supply chain and then tries to connect these effects to the drivers of complexity under three main categories of 1) market, 2) manufacturing technology, and 3) supply, planning and infrastructure. Possible impacts of additive manufacturing adoption on the supply chain complexity have been studied using information theoretic measures. An Agent-based Simulation (ABS) model has been developed to study and compare two different supply chain configurations. The findings of this study suggest that the adoption of AM can decrease the supply chain complexity, particularly when product customization is considered.


2021 ◽  
Author(s):  
Alexander Matschinski ◽  
Tim Osswald ◽  
Klaus Drechsler

The market segment of additive manufacturing is showing an annual growth of more than ten percent, with extrusion-based processes being the larger segment of the market. The scope of use is limited to secondary structures. Equipment manufacturers try to guarantee constant material characteristics by closed systems. The characteristic values are up to 50% below the ones from injection molding. The processing of high-performance polymers with reinforcing fibers is an additional challenge. Further development requires an opening of the material and manufacturing systems. The guidelines and standardization for this are still missing. For this reason, a functional analysis (FA) according to TRIZ ("theory of the resolution of invention-related tasks") is performed within this study. This identifies the undesired functions and quantifies their coupling with process components and parameters. In the FA, the manufactured part is the target component in order to address its quality. This way the FA identifies five undesirable functions in the process. These are: deform, cool, weaken, swell and shape. For hightemperature thermoplastics, thermal shrinkage is the primary cause of geometric tolerance. Therefore, the deformation is largely dependent on the cooling mechanism. For a detailed analysis, the polymer melt is further disassembled. The results are six sub-components. The weakening is mainly due to the physical phase of the voids, which exists during the entire processing. The breakdown comprises physical fields such as stress, temperature and flow. These determine the output properties as well as the bonding between the layers. The associated functions are the swelling and shaping. In order to generate broadly applicable standardizations, research questions for further investigation are derived from this study.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Christina Öberg

Purpose Additive manufacturing has been described as converting supply chains into demand chains. By focusing on metal additive manufacturing as a contemporary technology causing ongoing disruption to the supply chain, the purpose of this paper is to describe and discuss how incumbent firms act during an ongoing, transformational disruption of their supply chain. Design/methodology/approach Interviews and secondary data, along with seminars attracting approximately 600 individuals operating in metal additive manufacturing, form the empirical basis for this paper. Findings The findings of this paper indicate how disruption occurs at multiple positions in the supply chain. Episodic positions as conceptualised in this paper refer to how parties challenged by disruption attempt to reach normality while speeding the transformational disruption. Originality/value This paper contributes to previous research by theorising about episodic positions in light of a supply chain disruption. The empirical data are unique in how they capture supply chain change at the time of disruption and illustrate disruptive, transformational change to supply chains. The paper interlinks research on disruption from the innovation and supply chain literature, with contributions to both.


2019 ◽  
Vol 25 (3) ◽  
pp. 473-487 ◽  
Author(s):  
Yuan Zhang ◽  
Stefan Jedeck ◽  
Li Yang ◽  
Lihui Bai

PurposeDespite the widespread expectation that additive manufacturing (AM) will become a disruptive technology to transform the spare parts supply chain, very limited research has been devoted to the quantitative modeling and analysis on how AM could fulfill the on-demand spare parts supply. On the other hand, the choice of using AM as a spare parts supply strategy over traditional inventory is a rising decision faced by manufacturers and requires quantitative analysis for their AM-or-stock decisions. The purpose of this paper is to develop a quantitative performance model for a generic powder bed fusion AM system in a spare parts supply chain, thus providing insights into this less-explored area in the literature.Design/methodology/approachIn this study, analysis based on a discrete event simulation was carried out for the use of AM in replacement of traditional warehouse inventory for an on-demand spare parts supply system. Generic powder bed fusion AM system was used in the model, and the same modeling approach could be applied to other types of AM processes. Using this model, the impact of both spare parts demand characteristics (e.g. part size attributes, demand rates) and the AM operations characteristics (e.g. machine size and postpone strategy) on the performance of using AM to supply spare parts was studied.FindingsThe simulation results show that in many cases the AM operation is not as cost competitive compared to the traditional warehouse-based spare parts supply operation, and that the spare parts size characteristics could significantly affect the overall performance of the AM operations. For some scenarios of the arrival process of spare parts demand, the use of the batched AM production could potentially result in significant delay in parts delivery, which necessitates further investigations of production optimization strategies.Originality/valueThe findings demonstrate that the proposed simulation tool can not only provide insights on the performance characteristics of using AM in the spare parts supply chain, especially in comparison to the traditional warehousing system, but also can be used toward decision making for both the AM manufacturers and the spare parts service providers.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guorong Chen ◽  
Jiangyuan Zhao ◽  
Juli Deng

Service-oriented manufacturing is the new development of manufacturing systems, and manufacturing supply chain service is also an important part of the service-oriented manufacturing systems; hence, the optimal selection of parts suppliers becomes one of key problems in the supply chain system. Complex network theories made a rapid progress in recent years, but the classical models such as BA model and WS model can not resolve the widespread problems of manufacturing supply chain, such as the repeated attachment of edge and fixed number of vertices, but edges increased with preferential connectivity, and flexible edges’ probability. A core model is proposed to resolve the problem in the paper: it maps the parts supply relationship as a repeatable core; a vertex’s probability distribution function integrating the edge’s rate and vertex’s degree is put forward; some simulations, such as the growth of core, the degree distribution characteristics, and the impacting of parameter, are carried out in our experiments, and the case study is set also. The paper proposed a novel model to analyze the manufacturing supply chain system from the insights of complex network.


Author(s):  
Ricardo Jardim-Goncalves ◽  
Carlos Agostinho ◽  
Joao Sarraipa ◽  
Amparo Roca de Togores ◽  
Maria Jose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document