Comparison of image resolution in terahertz pulsed and continuous-wave imaging systems

Author(s):  
B. Davoudi ◽  
M. Khabiri ◽  
D. Saeedkia ◽  
S. Safavi-Naeini
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4092
Author(s):  
Gintaras Valušis ◽  
Alvydas Lisauskas ◽  
Hui Yuan ◽  
Wojciech Knap ◽  
Hartmut G. Roskos

In this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being geared toward the implementation of THz imaging systems in real operational conditions. The article will touch upon the advanced solid-state-based THz imaging systems, including room temperature THz sensors and arrays, as well as their on-chip integration with diffractive THz optical components. We will cover the current-state of compact room temperature THz emission sources, both optolectronic and electrically driven; particular emphasis is attributed to the beam-forming role in THz imaging, THz holography and spatial filtering, THz nano-imaging, and computational imaging. A number of advanced THz techniques, such as light-field THz imaging, homodyne spectroscopy, and phase sensitive spectrometry, THz modulated continuous wave imaging, room temperature THz frequency combs, and passive THz imaging, as well as the use of artificial intelligence in THz data processing and optics development, will be reviewed. This roadmap presents a structured snapshot of current advances in THz imaging as of 2021 and provides an opinion on contemporary scientific and technological challenges in this field, as well as extrapolations of possible further evolution in THz imaging.


2018 ◽  
Vol 11 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sandeep Kaushal ◽  
Bambam Kumar ◽  
Dharmendra Singh

AbstractIn through the wall imaging systems, wall parameters like its thickness and dielectric constant play an important role in the true and correct image formation of an object behind the wall made of various materials like brick cement, wood, plastic, etc. Incorrect estimation of these parameters leads to dislocation of the object and smearing or blurriness of the image too. A new autofocusing technique for a stepped frequency continuous wave -based radar at the frequency of 1–3 Ghz has been developed that corrects the wall's parameters like its thickness and dielectric constant and provides a better focused image of the target. For this purpose, a peak signal to noise ratio -based autofocusing technique has been developed by using curve fitting and the genetic algorithm. It is observed that the proposed technique has capability to focus the image up to good extent.


Author(s):  
С.А. Королев ◽  
А.В. Горюнов ◽  
В.В. Паршин

A new approach to the creation of millimeter-wave radio imaging systems is proposed. This approach is based on the use of an array receiver consisting of a densely packed (pixel size - 4 mm) array of planar mixers located in the focal plane of a quasi-optical objective, with application of the frequency-modulated continuous-wave radar technique. It has been demonstrated that the implementation of the heterodyne type of reception makes it possible to increase the distance range of the array radio imaging system up to ~ 100 m while maintaining the angular resolution at the previous level.


2010 ◽  
Vol 15 (1) ◽  
pp. 016015 ◽  
Author(s):  
Nimit L. Patel ◽  
Zi-Jing Lin ◽  
Yajuvendra Rathore ◽  
Edward H. Livingston ◽  
Hanli Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document