scholarly journals Spatio-temporal segmentation and estimation of ocean surface currents from satellite sea surface temperature fields

Author(s):  
Pierre Tandeo ◽  
Sileye Ba ◽  
Ronan Fablet ◽  
Bertrand Chapron ◽  
Emmanuelle Autret
2016 ◽  
Vol 33 (12) ◽  
pp. 2769-2784 ◽  
Author(s):  
M.-H. Rio ◽  
R. Santoleri ◽  
R. Bourdalle-Badie ◽  
A. Griffa ◽  
L. Piterbarg ◽  
...  

AbstractAccurate knowledge of ocean surface currents at high spatial and temporal resolutions is crucial for a gamut of applications. The altimeter observing system, by providing repeated global measurements of the sea surface height, has been by far the most exploited system to estimate ocean surface currents over the past 20 years. However, it neither permits the observation of currents moving away from the geostrophic balance nor is it capable of resolving the shortest spatial and temporal scales of the currents. Therefore, to overcome these limitations, in this study the ways in which the high-spatial-resolution and high-temporal-resolution information from sea surface temperature (SST) images can improve the altimeter current estimates are investigated. The method involves inverting the SST evolution equation for the velocity by prescribing the source and sink terms and employing the altimeter currents as the large-scale background flow. The method feasibility is tested using modeled data from the Mercator Ocean system. This study shows that the methodology may improve the altimeter velocities at spatial scales not resolved by the altimeter system (i.e., below 150 km) but also at larger scales, where the geostrophic equilibrium might not be the unique or dominant process of the ocean circulation. In particular, the major improvements (more than 30% on the meridional component) are obtained in the equatorial band, where the geostrophic assumption is not valid. Finally, the main issues anticipated when this method is applied using real datasets are investigated and discussed.


2020 ◽  
Author(s):  
Getachew Bayable Tiruneh ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background: Rainfall variability is a common characteristic in Ethiopia and it exceedingly affects agriculture particularly in the eastern parts of the country where rainfall is relatively scarce. Hence, understanding the spatio-temporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatio-temporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia.Method: The coefficient of variation (CV) and standardized anomaly index (SAI) was employed to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by the Pearson correlation coefficient (r).Results: The annual rainfall CV ranges from 12-19.36% while the seasonal rainfall CV extends from 15-28.49%, 24-35.58%, and 38-75.9% for average Kiremt (June-September), Belg (February-May), and Bega (October-January) seasons, respectively (1983-2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends of rainfall were not statistically significant (α = 0.05), unlike November. The annual rainfall trends showed a non-significant decreasing trend. On a seasonal basis, the trend of mean Kiremt and Belg seasons rainfall was decreased. But, it increased in Bega season although it was not statistically significant. Moreover, the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, the correlation between rainfall and Pacific Ocean SST was negative at annual time scales.Conclusions: High spatial and temporal rainfall variability on monthly, seasonal, and annual time scales was observed in the study area. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall was increased annually and in the Bega season rather than other seasons. Generally, the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


2020 ◽  
Vol 27 (5) ◽  
Author(s):  
P. N. Lishaev ◽  
V. V. Knysh ◽  
G. K. Korotaev ◽  
◽  
◽  
...  

Purpose. The investigation is aimed at increasing accuracy of the temperature field reconstruction in the Black Sea upper layer. For this purpose, satellite observations of the sea surface temperature and the three-dimensional fields of temperature (in the 50–500 m layer) and salinity (in the 2.5–500 m layer) pseudo-measurements, previously calculated by the altimetry and the Argo floats data, were jointly assimilated in the Marine Hydrophysical Institute model. Methods and Results. Assimilation of the sea surface temperature satellite observations is the most effective instrument in case the discrepancies between the sea surface and the model temperatures are extrapolated over the upper mixed layer depth up to its lower boundary. Having been analyzed, the temperature profiles resulted from the forecast calculation for 2012 and from the Argo float measurements made it possible to obtain a simple criterion (bound to the model grid) for determining the upper mixed layer depth, namely the horizon on which the temperature gradient was less or equal to ≤ 0.017 °C/m. Within the upper mixed layer depth, the nudging procedure of satellite temperature measurements with the selected relaxation factor and the measurement errors taken into account was used in the heat transfer equation. The temperature and salinity pseudo-measurements were assimilated in the model by the previously proposed adaptive statistics method. To test the results of the sea surface temperature assimilation, the Black Sea hydrophysical fields were reanalyzed for 2012. The winter-spring period (January – April, December) is characterized by the high upper mixed layer depths, well reproducible by the Pacanowski – Philander parameterization, and also by the low values (as compared to the measured ones) of the basin-averaged monthly mean square deviations of the simulated temperature fields. The increased mean square deviations in July – September are explained by absence of the upper mixed layer in the temperature profiles measured by the Argo floats that is not reproduced by the Pacanowski – Philander parameterization. Conclusions. The algorithm for assimilating the sea surface temperature together with the profiles of the temperature and salinity pseudo-measurements reconstructed from the altimetry data was realized. Application of the upper mixed layer depths estimated by the temperature vertical profiles made it possible to correct effectively the model temperature by the satellite-derived sea surface temperature, especially for a winter-spring period. It permitted to reconstruct the temperature fields in the sea upper layer for 2012 with acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document