scholarly journals Video aesthetic quality assessment using kernel Support Vector Machine with isotropic Gaussian sample uncertainty (KSVM-IGSU)

Author(s):  
Christos Tzelepis ◽  
Eftichia Mavridaki ◽  
Vasileios Mezaris ◽  
Ioannis Patras
2021 ◽  
Vol 18 (4) ◽  
pp. 1275-1281
Author(s):  
R. Sudha ◽  
G. Indirani ◽  
S. Selvamuthukumaran

Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.


In agriculture the major problem is leaf disease identifying these disease in early stage increases the yield. To reduce the loss identifying the various disease is very important. In this work , an efficient technique for identifying unhealthy tomato leaves using a machine learning algorithm is proposed. Support Vector Machines (SVM) is the methodology of machine learning , and have been successfully applied to a number of applications to identify region of interest, classify the region. The proposed algorithm has three main staggers, namely preprocessing, feature extraction and classification. In preprocessing, the images are converted to RGB and the average filter is used to eliminate the noise in the input image. After the pre-processing stage, features such as texture, color and shape are extracted from each image. Then, the extracted features are presented to the classifier to classify an input tomato leaf as a healthy or unhealthy image. For classification, in this paper, a multi-kernel support vector machine (MKSVM) is used. The performance of the proposed method is analysed on the basis of different metrics, such as accuracy, sensitivity and specificity. The images used in the test are collected from the plant village. The proposed method implemented in MATLAB.


2021 ◽  
Vol 25 (1) ◽  
pp. 35-39
Author(s):  
Łukasz Glodek ◽  
Szymon Bysko ◽  
Witold Nocoń

This paper proposes a model quality assessment method based on Support Vector Machine, which can be used to develop a digital twin. This work is strongly connected with Industry 4.0, in which the main idea is to integrate machines, devices, systems, and IT. One of the goals of Industry 4.0 is to introduce flexible assortment changes. Virtual commissioning can be used to create a simulation model of a plant or conduct training for maintenance engineers. On a branch of virtual commissioning is a digital twin. The digital twin is a virtual representation of a plant or a device. Thanks to the digital twin, different scenarios can be analyzed to make the testing process less complicated and less time-consuming. The goal of this work is to propose a coefficient that will take into account expert knowledge and methods used for model quality assessment (such as Normalized Root Mean Square Error – NRMSE, Maximum Error – ME). NRMSE and ME methods are commonly used for this purpose, but they have not been used simultaneously so far. Each of them takes into consideration another aspect of a model. The coefficient allows deciding whether the model can be used for digital twin appliances. Such an attitude introduces the ability to test models automatically or in a semi-automatic way.


Sign in / Sign up

Export Citation Format

Share Document