flame imaging
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Eirik Æs⊘y ◽  
José G. Aguilar ◽  
Mirko R. Bothien ◽  
Nicholas Worth ◽  
James Dawson

Abstract We investigate the occurrence of modulations in the gain and phase of flame transfer functions (FTF) measured in CH4/H2 and pure H2 flames. These are shown to be caused by flow disturbances originating from the screws used to centre the bluff body indicative of a more generalised phenomenon of convective wave propagation. Velocity measurements are performed around the injector dump plane, inside the injector pipe, and in the wake of the bluff body to provide detailed insight into the flow. Peaks corresponding to natural shedding frequencies of the screws appear in the unforced velocity spectra and the magnitude of these convective modes depends on the screws’ location. Flame imaging and PIV measurements show that these disturbances do not show up in the mean velocity and flame shape which appear axisymmetric. However, the rms fields capture a strong asymmetry due to convective disturbances. To quantify the role of these convective disturbances, hydrodynamic transfer functions are constructed from the forced cold flow, and similar modulations observed in the FTFs are found. A strong correlation is obtained between the two transfer functions, subsequently, the modulations are shown to be centered on the vortex shedding frequency corresponding to the first convective mode. For acoustic-convective interaction to be possible, the shedding (convective) frequency needs to be lower than the cut-off frequency of the flame response. This condition is shown to be more relevant for hydrogen flames compared to methane flames due to their shorter flame lengths and thus increased cut-off frequency.


2021 ◽  
Author(s):  
Eirik Æsøy ◽  
José G. Aguilar ◽  
Mirko R. Bothien ◽  
Nicholas A. Worth ◽  
James R. Dawson

Abstract We investigate the occurrence and source of modulations in the gain and phase of flame transfer functions (FTF) measured in perfectly premixed, bluff body stabilised CH4/H2 and pure H2 flames. The modulations are shown to be caused by flow disturbances originating from the upstream geometry, in particular the grub screws used to centre the bluffbody, indicative of a more generalised phenomenon of convective wave propagation. Velocity measurements are performed at various locations around the injector dump plane, inside the injector pipe, and in the wake of the bluffbody to provide detailed insight into the flow. Peaks corresponding to natural shedding frequencies of the grub screws appear in the unforced velocity spectra and it is found that the magnitude of these convective modes depends on their location. Flame imaging and PIV measurements show that these disturbances do not show up in the mean velocity and flame shape which appear approximately axisymmetric. However, the urms and vrms fields capture a strong asymmetry due to convective disturbances. To further quantify the role of these convective disturbances, hydrodynamic transfer functions are constructed from the forced cold flow, and similar modulations observed in the FTFs are found. A strong correlation is obtained between the two transfer functions, subsequently, the modulations are shown to be centered on the vortex shedding frequency corresponding to the first convective mode. The reason behind the excitation of the first mode is due to a condition that states that for acoustic-convective interaction to be possible, the shedding (convective) frequency needs to be lower than the cut-off frequency of the flame response. This condition is shown to be more relevant for hydrogen flames compared to methane flames due to their shorter flame lengths and thus increased cut-off frequency.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 534
Author(s):  
Yei-Chin Chao ◽  
Tzu-Wei Chang ◽  
Yu-Pei Chan

On research of plasma assisted combustion, effects of electric and plasma discharges in DC, AC and pulse forms on reattachment of a lifted flame have attracted extensive attention. However, the detailed plasma assisted reattachment process and mechanism and roles of induced corona discharge and corona-induced ozone on the reattachment process are still unclear and undocumented. The forced reattachment process of a lifted diffusion jet flame by repetitive DC electric pulse discharges was experimentally investigated in this study using high-speed flame imaging, conditioned particle image velocimetry (PIV), and planar ozone concentration imaging. The forced reattachment process can be divided into three stages in sequence: ionic wind prior to corona initiation, corona initiation, and corona enhancement propagation. The conditioned PIV results showed that the instantaneous flame base propagation velocity is sufficiently enhanced beyond the laminar burning velocity for high pulse-repetition-frequency (PRF) cases at the instant of pulse discharge (on pulse) due to the enhanced oxidation of the corona induced ozone. By observing the dynamic flame-base behavior and evolution characteristics of the short-lived corona induced ozone for various PRFs, the novel forced reattachment process and mechanism of a lifted jet flame induced by repetitive DC electric pulse discharges is proposed.


Fuel ◽  
2020 ◽  
pp. 119745
Author(s):  
Zhezhe Han ◽  
Jian Li ◽  
Biao Zhang ◽  
Md. Moinul Hossain ◽  
Chuanlong Xu

Author(s):  
Md. Amzad Hossain ◽  
Md Nawshad Arslan Islam ◽  
Ahsan Choudhuri

Abstract The article presents an investigation of CH (C-X) planar laser induced fluorescence imaging (PLIF) of highly turbulent methane-air flames inside a windowed combustor. Flame dynamics and flame growth and evolution of methane-air flames stabilized over a backward facing step at high Reynolds Number (Re) (Re = 15000 and Re = 30000) with an equivalence ratio of 0.7 are discussed. It was observed that the flame evolution was faster at Re = 30000 than that of Re = 15000. The rate of initiation or formation of wrinkles, detachment of the wrinkles and burnout of the burned gases from the flame core increased with the increase in Re. The qualitative flame imaging shows that the width of the flame profile increases as the flame progress towards downstream and the flame becomes thinner as the turbulence level increases. An experimental methodology was developed to optimize the system for excitation, detection of the CH C-X band and post-processing the PLIF images.


2019 ◽  
Vol 9 (13) ◽  
pp. 2678 ◽  
Author(s):  
Atsushi Nishiyama ◽  
Minh Khoi Le ◽  
Takashi Furui ◽  
Yuji Ikeda

Among multiple factors that affect the quality of combustion, the intricate and complex interaction between in-cylinder flow/turbulent field and flame propagation is one of the most important. In this study, true simultaneous, crank-angle resolved imaging of the flame front propagation and the measurement of flow-field was achieved by the application of high-speed Particle Image Velocimetry (PIV). The technique was successfully implemented to avoid problems commonly associated with PIV in a combustion environment, such as interferences and reflections, avoided thanks to a number of adjustments and arrangements. All experiments were carried out inside a single-cylinder optical gasoline engine operated at 1200 rpm, using port fuel injection (PFI) with stoichiometric mixtures. It was found that the global vortex location of the tumble motion heavily influences the flame growth direction as well as the flame shape, mainly due to the tumble-induced flow across the ignition source. The flame propagation also influences the flow-field such that the pre-ignition flow can be maintained and the flow of unburned region surrounding the flame front will be enhanced.


Author(s):  
Pankaj Pancharia ◽  
Vikram Ramanan ◽  
Baladandayuthapani Nagarajan ◽  
S. R. Chakravarthy

Abstract The present study is an experimental investigation of the nature of acoustically induced flashback in a lab-scale dump combustor. The control parameters varied include the inlet Reynolds number (Re) and the inlet turbulence intensity. The primary bifurcation plots of the combustor from stable to the unstable condition are seen to be significantly altered by the inlet turbulence intensity, with the latter delaying the onset of combustion instability to higher Re. The analysis of multivariate high-speed data acquisition and processing (viz. unsteady pressure, flame imaging and velocity field by means of PIV) reveals the role of low-frequency high amplitude acoustics in modulating the flame. It is seen that high amplitude oscillations are sustained by two mechanisms 1. Modulation of the flame by coherent structures shedding at the step and 2. The bulk flame motion in-and-out at the edge of the step. It is seen that flow reversal at sufficiently low frequencies provide enough duration for the hot products to ignite fresh reactants upstream of the duct, which in-turn reinforces the coherent unsteadiness in the system, thereby increasing the propensity of the mixture to be ignited more upstream with every cycle. This ultimately leads to the flame flashing back till the point of premixing. This work thus addresses and reforms the occurrence of flashback being an example of loss of static stability, whereby the overriding presence of dynamic combustion instability results in a flashback to behave in a dynamic manner.


2019 ◽  
Vol 437 ◽  
pp. 33-43 ◽  
Author(s):  
Hecong Liu ◽  
Bin Sun ◽  
Weiwei Cai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document