Variations in surface morphology of ion implanted InP after rapid thermal annealing

Author(s):  
D.V. Stevanovic ◽  
P.L. Ferret ◽  
D.A. Thompson
1990 ◽  
Vol 181 ◽  
Author(s):  
A. Katz ◽  
S. J. Pearton ◽  
M. Geva

ABSTRACTAn intensive comparison between the efficiency of InP rapid thermal annealing within two types of SiC-coated graphite susceptors and by using the more conventional proximity approach, in providing degradation-free substrate surface morphology, was carried out. The superiority of annealing within a susccptor was clearly demonstrated through the evaluation of AuGe contact performance to carbon-implanted InP substrates, which were annealed to activate the implants prior to the metallization. The susceptor annealing provided better protection against edge degradation, slip formation and better surface morphology, due to the elimination of P outdiffusion and pit formation. The two SiC-coated susceptors that were evaluated differ from each other in their geometry. The first type must be charged with the group V species prior to any annealing cycle. Under the optimum charging conditions, effective surface protection was provided only to one anneal (750°C, 10s) of InP before charging was necessary. The second contained reservoirs for provision of the group V element partial pressure, enabled high temperature annealing at the InP without the need for continual recharging of the susceptor. Thus, one has the ability to subsequentially anneal a lot of InP wafers at high temperatures without inducing any surface deterioration.


1996 ◽  
Vol 69 (7) ◽  
pp. 996-998 ◽  
Author(s):  
Gong‐Ru Lin ◽  
Wen‐Chung Chen ◽  
Feruz Ganikhanov ◽  
C.‐S. Chang ◽  
Ci‐Ling Pan

1989 ◽  
Vol 146 ◽  
Author(s):  
Y. M. Kim ◽  
G. Q. Lo ◽  
D. L. Kwong ◽  
H. H. Tseng ◽  
R. Hance

ABSTRACTEffects of defect evolution during rapid thermal annealing (RTA) on the anomalous diffusion of ion implanted boron have been studied by implanting silicon ions prior to boron implantation with doses ranging from 1 × 1014cm−2 to 1 × 1016cm−2 at energies ranging from 20 to 150 KeV into silicon wafers. Diffusion of boron atoms implanted into a Si preamorphized layer during RTA is found to be anomalous in nature, and the magnitude of boron displacement depends on the RTA temperature. While RTA of preamorphized samples at 1150°C shows an enhanced boron displacement compared to that in crystalline samples, a reduced displacement is observed in preamorphized samples annealed by RTA at 1000°C. In addition, low dose pre-silicon implantation enhances the anomalous displacement significantly, especially at high RTA temperatures (1 150°C). Finally, the anomalous diffusion is found to depend strongly on the defect evolution during RTA.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Terry L. Alford ◽  
Karthik Sivaramakrishnan ◽  
Anil Indluru ◽  
Iftikhar Ahmad ◽  
Bob Hubbard ◽  
...  

AbstractVariable frequency microwaves (VFM) and rapid thermal annealing (RTA) were used to activate ion implanted dopants and re-grow implant-damaged silicon. Four-point-probe measurements were used to determine the extent of dopant activation and revealed comparable resistivities for 30 seconds of RTA annealing at 900 °C and 6-9 minutes of VFM annealing at 540 °C. Ion channeling analysis spectra revealed that microwave heating removes the Si damage that results from arsenic ion implantation to an extent comparable to RTA. Cross-section transmission electron microscopy demonstrates that the silicon lattice regains nearly all of its crystallinity after microwave processing of arsenic implanted silicon. Secondary ion mass spectroscopy reveals limited diffusion of dopants in VFM processed samples when compared to rapid thermal annealing. Our results establish that VFM is an effective means of low-temperature dopant activation in ion-implanted Si.


1989 ◽  
Vol 54 (8) ◽  
pp. 727-729 ◽  
Author(s):  
A. C. Campbell ◽  
A. Dodabalapur ◽  
G. E. Crook ◽  
B. G. Streetman

Sign in / Sign up

Export Citation Format

Share Document