FUPA: Future Utilization Prediction Algorithm based Load Balancing Scheme for Optimal VM Migration in Cloud Computing

Author(s):  
R. Gowri Prakash ◽  
R. Shankar ◽  
S. Duraisamy
Author(s):  
Vijayakumar Polepally ◽  
K. Shahu Chatrapati

With the advancement in the science and technology, cloud computing has become a recent trend in environment with immense requirement of infrastructure and resources. Load balancing of cloud computing environments is an important matter of concern. The migration of the overloaded virtual machines (VMs) to the underloaded VM with optimized resource utilization is the effective way of the load balancing. In this paper, a new VM migration algorithm for the load balancing in the cloud is proposed. The migration algorithm proposed (EGSA-VMM) is based on exponential gravitational search algorithm which is the integration of gravitational search algorithm and exponential weighted moving average theory. In our approach, the migration is done based on the migration cost and QoS. The experimentation of proposed EGSA-based VM migration algorithm is compared with ACO and GSA. The simulation of experiments shows that the proposed EGSA-VMM algorithm achieves load balancing and reasonable resource utilization, which outperforms existing migration strategies in terms of number of VM migrations and number of SLA violations.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Jia Zhao ◽  
Yan Ding ◽  
Gaochao Xu ◽  
Liang Hu ◽  
Yushuang Dong ◽  
...  

Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.


Author(s):  
M. Chaitanya ◽  
K. Durga Charan

Load balancing makes cloud computing greater knowledgeable and could increase client pleasure. At reward cloud computing is among the all most systems which offer garage of expertise in very lowers charge and available all the time over the net. However, it has extra vital hassle like security, load administration and fault tolerance. Load balancing inside the cloud computing surroundings has a large impact at the presentation. The set of regulations relates the sport idea to the load balancing manner to amplify the abilties in the public cloud environment. This textual content pronounces an extended load balance mannequin for the majority cloud concentrated on the cloud segregating proposal with a swap mechanism to select specific strategies for great occasions.


Sign in / Sign up

Export Citation Format

Share Document