Fault Diagnosis Based on Wavelet Entropy Feature Extraction and Information Fusion

Author(s):  
Mohammadreza Vazifeh ◽  
Farzaneh Abbasi Hosseinabadi
2014 ◽  
Vol 599-601 ◽  
pp. 1225-1228
Author(s):  
An Liu ◽  
Yi Du ◽  
Jia Man Ding

Gears typical failure modes and fault diagnosis methods were summarized, and their characteristics and deficiency were contrasted. As almost all method need feature extraction before information fusion, the rich information in original signals were lost in this process. Another difficult problems of information fusion is the the space-time registration. The probability box theory can be a new method to solve the above two problems. The gears fault signal modeling method based on probability box theory were then proposed. Finally the prospects and study directions of this method’s applications in gear box fault diagnosis were proposed.


2010 ◽  
Vol 34-35 ◽  
pp. 995-999 ◽  
Author(s):  
Xue Jun Li ◽  
D.L. Yang ◽  
Ling Li Jiang

This paper proposed a fault diagnosis based on multi-sensor information fusion for rolling bearing. This method used the energy value of multiple sensors is used as feature vector and a binary tree support vector machine (Binary Tree Support Vector Machine, BT-SVM) is used for pattern recognition and fault diagnosis. By analyzing the training samples, penalty factor and the kernel function parameters have effects on the recognition rate of bearing fault, then a approximate method to determine optimum value are proposed, Compared with the traditional single sensor by using the components energy of EMD as feature, the results show that the proposed method in this paper significantly reduce feature extraction time, and improve diagnostic accuracy, which is up to99.82%. This method is simple, effective and fast in feature extraction and meets the bearing diagnosis requirement of real-time fault diagnosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xiangkai Ma ◽  
Pei Wang ◽  
Bozhou Zhang ◽  
Ming Sun

In complicated mechanical systems, fault diagnosis, especially regarding feature extraction from multiple sensors, remains a challenge. Most existing methods for feature extraction tend to assume that all sensors have uniform sampling rates. However, complex mechanical systems use multirate sensors. These methods use upsampling for data preprocessing to ensure that all signals at the same scale can cause certain time-frequency features to vanish. To address these issues, this paper proposes a Multirate Sensor Information Fusion Strategy (MRSIFS) for multitask fault diagnosis. The proposed method is based on multidimensional convolution blocks incorporating multisource information fusion into the convolutional neural network (CNN) architecture. Features with different sampling rates from the raw signals are run through a multichannel parallel fault feature extraction framework for fault diagnosis. Additionally, time-frequency analysis technology is used to reveal fault information in the association between time and frequency domains. The simulation platform’s experimental results show that the proposed multitask model achieves higher diagnosis accuracy than the existing methods. Furthermore, manual feature selection for each task becomes unnecessary in MRSIFS, which has the potential toward a general-purpose framework.


2014 ◽  
Vol 7 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Jiatang Cheng ◽  
Li Ai ◽  
Zhimei Duan ◽  
Yan Xiong

Aiming at the problem of the conventional vibration fault diagnosis technology with inconsistent result of a hydroelectric generating unit, an information fusion method was proposed based on the improved evidence theory. In this algorithm, the original evidence was amended by the credibility factor, and then the synthesis rule of standard evidence theory was utilized to carry out information fusion. The results show that the proposed method can obtain any definitive conclusion even if there is high conflict evidence in the synthesis evidence process, and may avoid the divergent phenomenon when the consistent evidence is fused, and is suitable for the fault classification of hydroelectric generating unit.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 23717-23725
Author(s):  
Jiaxing Wang ◽  
Dazhi Wang ◽  
Sihan Wang ◽  
Wenhui Li ◽  
Keling Song

Sign in / Sign up

Export Citation Format

Share Document