A Computer Numerical Simulation Study Considering Starting Up Pressure Gradient for Low Permeability Reservoir

Author(s):  
Daiyin Yin ◽  
Weiming Huang
2015 ◽  
Vol 8 (1) ◽  
pp. 420-426 ◽  
Author(s):  
Chengli Zhang ◽  
Dezhi Liang ◽  
Daiyin Yin ◽  
Guoliang Song

Based on the analysis of seepage mechanism of fracturing wells in low permeability reservoir, this paper establishes the capacity model of the vertical fractured well production under the factors of Start-up pressure gradient, pressure sensitive effect and the artificial fracture length. The numerical simulation is compiled and software calculates the capacity model by using numerical simulation. This simulation technique verifies the validity of the model and numerical method. On this basis, we study the influence of the included angle of artificial fracture and well array direction, artificial fracture length, start-up pressure gradient and production pressure difference to the capacity of the oil well.


2013 ◽  
Vol 807-809 ◽  
pp. 2554-2557
Author(s):  
Qi Han Zhang ◽  
Zi Yi Guo ◽  
Ji Peng ◽  
Ting Song Xiong ◽  
Shi Feng Xue

Considering the pressure-sensitive effect and threshold pressure gradient in low permeability reservoirs, a new mathematical model of the variable permeability for reservoir between injection and production well is established. The Garlerkin method is used to set up the finite element computation equations, and corresponding numerical simulation program is developed. The influence of Injection-production pressure, well spacing and hydraulic fracture are quantitative evaluation. The simulation results show that the pressure-sensitive effect and threshold pressure gradient has a strong influence on pressure distribution between injection and production wells. Establishing the effective driving pressure system is the key to improve well production of low permeability reservoir.


2012 ◽  
Vol 92-93 ◽  
pp. 40-47 ◽  
Author(s):  
Rongze Yu ◽  
Yanan Bian ◽  
Yang Li ◽  
Xiaowei Zhang ◽  
Jun Yan ◽  
...  

2014 ◽  
Vol 670-671 ◽  
pp. 728-731
Author(s):  
Su Ling Wang ◽  
Ying Zhang ◽  
Guo Feng Zhao ◽  
Si Qi Wang ◽  
Shan Ren Zhang

Horizontal well hydraulic fracture construction technology has already become the main development means of low permeability reservoir, and the crack initiation pressure is a key factor in fracture construction. Taking ABAQUS as the platform, combined with rock mechanics, elastic mechanics, fracture mechanics, damage mechanics and fluid-solid coupling theory, to establish horizontal well mechanical model, crack initiation law of horizontal well under different conditions were obtained by using finite element method. According to the horizontal well fracture tested data in Daqing peripheral oil fields, the crack initiation pressure and numerical simulation results are in good agreement, it shows that the numerical simulation method is reasonable, then analyze influence factor of crack initiation pressure on the basis.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liqiang Wang ◽  
Zhengke Li ◽  
Mingji Shao ◽  
Yinghuai Cui ◽  
Wenbo Jing ◽  
...  

After Vogel proposed a dimensionless inflow performance equation, with the rise of the horizontal well production mode, a large number of inflow performance relationship (IPR) equations have emerged. In the productivity analysis of deviated and horizontal wells, the IPR equation proposed by Cheng is mainly used. However, it is still unclear whether these inflow performance models (such as the Cheng, Klins-Majcher, Bendakhlia-Aziz, and Wiggins-Russell-Jennings types) are suitable for productivity evaluations of horizontal and deviated wells in low-permeability reservoirs. In-depth comparisons and analyses have not been carried out, which hinders improvements in the accuracy of the productivity evaluations of horizontal wells in low-permeability reservoirs. In this study, exploratory work was conducted in two areas. First, the linear flow function relationship used in previous studies was improved. Based on the experimental pressure-volume-temperature results, a power exponential flow function model was established according to different intervals greater or less than the bubble point pressure, which was introduced into the subsequent derivation of the inflow performance equation. Second, given the particularity of low-permeability reservoir percolation, considering that the reservoir is a deformation medium, and because of the existence of a threshold pressure gradient in fluid flow, the relationship between permeability and pressure was changed. The starting pressure gradient was introduced into the subsequent establishment of the inflow performance equation. Based on the above two aspects of this work, the dimensionless IPR of single-phase and oil-gas two-phase horizontal wells in a deformed medium reservoir was established by using the equivalent seepage resistance method and complex potential superposition principle. Furthermore, through regression and error analyses of the standard inflow performance data, the correlation coefficients and error distributions of six types of IPR equations applicable to deviated and horizontal wells at different inclination angles were compared. The results show that the IPR equation established in this study features good stability and accuracy and that it can fully reflect the particularity of low-permeability reservoir seepage. It provides the best choice of the IPR between inclined wells and horizontal wells in low-permeability reservoirs. The other types of IPR equations are the Wiggins-Russell-Jennings, Klins-Majcher, Vogel, Fetkovich, Bendakhlia-Aziz, and Harrison equations, listed here in order from good to poor in accuracy.


Sign in / Sign up

Export Citation Format

Share Document