Low Frequency Mode Estimation of a Dynamic Power System by Noise Assisted Empirical Mode Decomposition

Author(s):  
Papia Ray ◽  
Rajesh Kumar Lenka
2014 ◽  
Vol 981 ◽  
pp. 663-667
Author(s):  
Hong Ling Xie ◽  
Ting Yue

For the output of wind power system has the characteristics of randomness, volatility and intermittence, the voltage of wind power system low frequency oscillation is one of the most common fluctuations in the system. For the problem of low frequency oscillation, the limitations of the detection methods such as the Lyapunov linearization method, the Prony method, wavelet transform method are summed up, and a new detecting method named Hilbert-huang Transform (HHT) is put forward in this paper, which can detect the oscillation accurately and timely. To solve the problem of end effect in the process of empirical mode decomposition (EMD), B-spline empirical mode decomposition based on support vector machine is applied in dealing with the end issue. an extension of the original signal is applied. Then, calculating the average curve of the signal by B-spline interpolation method. Finally getting the intrinsic mode function (IMF) by empirical mode decomposition (EMD). The practicality of the method is verified by Matlab simulation.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3125
Author(s):  
Zou ◽  
Chen ◽  
Liu

Considering the lack of precision in transforming measured micro-electro-mechanical system (MEMS) accelerometer output signals into elevation signals, this paper proposes a bridge dynamic displacement reconstruction method based on the combination of ensemble empirical mode decomposition (EEMD) and time domain integration, according to the vibration signal traits of a bridge. Through simulating bridge analog signals and verifying a vibration test bench, four bridge dynamic displacement monitoring methods were analyzed and compared. The proposed method can effectively eliminate the influence of low-frequency integral drift and high-frequency ambient noise on the integration process. Furthermore, this algorithm has better adaptability and robustness. The effectiveness of the method was verified by field experiments on highway elevated bridges.


2005 ◽  
Vol 9 (3) ◽  
pp. 127-137 ◽  
Author(s):  
S. Sinclair ◽  
G. G. S. Pegram

Abstract. A data-driven method for extracting temporally persistent information, at different spatial scales, from rainfall data (as measured by radar/satellite) is described, which extends the Empirical Mode Decomposition (EMD) algorithm into two dimensions. The EMD technique is used here to decompose spatial rainfall data into a sequence of high through to low frequency components. This process is equivalent to the application of successive low-pass spatial filters, but based on the observed properties of the data rather than the predetermined basis functions used in traditional Fourier or Wavelet decompositions. It has been suggested in the literature that the lower frequency components (those with large spatial extent) of spatial rainfall data exhibit greater temporal persistence than the higher frequency ones. This idea is explored here in the context of Empirical Mode Decomposition. The paper focuses on the implementation and development of the two-dimensional extension to the EMD algorithm and it's application to radar rainfall data, as well as examining temporal persistence in the data at different spatial scales.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5392 ◽  
Author(s):  
Yuejuan Lv ◽  
Pengfei Wang ◽  
Yu Wang ◽  
Xin Liu ◽  
Qing Bai ◽  
...  

Phase-drift elimination is crucial to vibration recovery in the coherent detection phase-sensitive optical time domain reflectometry system. The phase drift drives the whole phase signal fluctuation as a baseline, and its negative effect is obvious when the detection time is long. In this paper, empirical mode decomposition (EMD) is presented to extract and eliminate the phase drift adaptively. It decomposes the signal by utilizing the characteristic time scale of the data, and the baseline is eventually obtained. It is validated by theory and experiment that the phase drift deteriorates seriously when the length of the vibration region increases. In an experiment, the phase drift was eliminated under the conditions of different vibration frequencies of 1 Hz, 5 Hz, and 10 Hz. The phase drift was also eliminated with different vibration intensities. Furthermore, the linear relationship between phase and vibration intensity is demonstrated with a correlation coefficient of 99.99%. The vibrations at 0.5 Hz and 0.3 Hz were detected with signal-to-noise ratios (SNRs) of 55.58 dB and 64.44 dB. With this method, when the vibration frequency is at the level of Hz or sub-Hz, the phase drift can be eliminated. This contributes to the detection and recovery of low-frequency perturbation events in practical applications.


1985 ◽  
Vol 28 (7) ◽  
pp. 2302
Author(s):  
M. A. Makowski ◽  
G. A. Emmert

Sign in / Sign up

Export Citation Format

Share Document