Stacked Convolutional Bidirectional LSTM Recurrent Neural Network for Bearing Anomaly Detection in Rotating Machinery Diagnostics

Author(s):  
Kwangsuk Lee ◽  
Jae-Kyeong Kim ◽  
Jaehyong Kim ◽  
Kyeon Hur ◽  
Hagbae Kim
2021 ◽  
Vol 9 ◽  
Author(s):  
Tushar Saini ◽  
Pratik Chaturvedi ◽  
Varun Dutt

Air quality is a major problem in the world, having severe health implications. Long-term exposure to poor air quality causes pulmonary and cardiovascular diseases. Several studies have also found that deteriorating air quality also causes substantial economic losses. Thus, techniques that can forecast air quality with higher accuracy may help reduce health and economic consequences. Prior research has utilized state-of-the-art artificial neural network and recurrent neural network models for forecasting air quality. However, a comprehensive investigation of different architectures of recurrent neural network, especially LSTMs and ensemble techniques, has been less explored. Also, there have been less explorations of long-term air quality forecasts via these methods exists. This research proposes the development and calibration of recurrent neural network models and their ensemble, which can forecast air quality in terms of PM2.5 concentration 6 hours ahead in time. For forecasting air quality, a vanilla-LSTM, a stack-LSTM, a bidirectional-LSTM, a CNN-LSTM, and an ensemble of individual LSTM models were trained on the UCI Machine Learning Beijing dataset. Data were split into two parts, where 80% of data were used for training the models, while the remaining 20% were used for validating the models. For comparative analysis, four regression losses were calculated, namely root mean squared error, mean absolute percentage error, mean absolute error and Pearson’s correlation coefficient. Results revealed that among all models, the ensemble model performed the best in predicting the PM2.5 concentrations. Furthermore, the ensemble model outperformed other models reported in literature by a long margin. Among the individual models, the bidirectional-LSTM performed the best. We highlight the implications of this research on long-term forecasting of air quality via recurrent and ensemble techniques.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3109 ◽  
Author(s):  
Wenkai Liu ◽  
Ping Guo ◽  
Lian Ye

Fault diagnosis is critical to ensuring the safety and reliable operation of rotating machinery systems. Long short-term memory networks (LSTM) have received a great deal of attention in this field. Most of the LSTM-based fault diagnosis methods have too many parameters and calculation, resulting in large memory occupancy and high calculation delay. Thus, this paper proposes a low-delay lightweight recurrent neural network (LLRNN) model for mechanical fault diagnosis, based on a special LSTM cell structure with a forget gate. The input vibration signal is segmented into several shorter sub-signals in order to shorten the length of the time sequence. Then, these sub-signals are sent into the network directly and converted into the final diagnostic results without any manual participation. Compared with some existing methods, our experiments illustrate that the proposed method has less memory space occupancy and lower computational delay while maintaining the same level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document