Using biological spring to improve propulsive efficiency for fishlike robot

Author(s):  
Dan Xia ◽  
Weishan Chen ◽  
Junkao Liu
1985 ◽  
Vol 22 (3) ◽  
pp. 200-207 ◽  
Author(s):  
Gifford Bull ◽  
Philip D. Bridges

Author(s):  
Dennis Keller

AbstractThe scope of the present paper is to assess the potential of distributed propulsion for a regional aircraft regarding aero-propulsive efficiency. Several sensitivities such as the effect of wingtip propellers, thrust distribution, and shape modifications are investigated based on a configuration with 12 propulsors. Furthermore, an initial assessment of the high-lift performance is undertaken in order to estimate potential wing sizing effects. The performance of the main wing and the propellers are thereby equally considered with the required power being the overall performance indicator. The results indicate that distributed propulsion is not necessarily beneficial regarding the aero-propulsive efficiency in cruise flight. However, the use of wing tip propellers, optimization of the thrust distribution, and wing resizing effects lead to a reduction in required propulsive power by $$-2.9$$ - 2.9 to $$-3.3\,\%$$ - 3.3 % compared to a configuration with two propulsors. Adapting the leading edge to the local flow conditions did not show any substantial improvement in cruise configuration to date.


2011 ◽  
Vol 689 ◽  
pp. 32-74 ◽  
Author(s):  
C.-K. Kang ◽  
H. Aono ◽  
C. E. S. Cesnik ◽  
W. Shyy

AbstractEffects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are identified based on a scaling argument. In particular, at the Reynolds number regime of $O(1{0}^{3} \ensuremath{-} 1{0}^{4} )$ and the reduced frequency of $O(1)$, the added mass force, related to the acceleration of the wing, is important. Based on the order of magnitude and energy balance arguments, a relationship between the propulsive force and the maximum relative wing-tip deformation parameter ($\gamma $) is established. The parameter depends on the density ratio, St, k, natural and flapping frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency can be deduced by the same scaling procedures. It seems that the maximum propulsive force is obtained when flapping near the resonance, whereas the optimal propulsive efficiency is reached when flapping at about half of the natural frequency; both are supported by the reported studies. The established scaling relationships can offer direct guidance for micro air vehicle design and performance analysis.


1960 ◽  
Vol 9 (2) ◽  
pp. 305-317 ◽  
Author(s):  
M. J. Lighthill

The paper seeks to determine what transverse oscillatory movements a slender fish can make which will give it a high Froude propulsive efficiency, $\frac{\hbox{(forward velocity)} \times \hbox{(thrust available to overcome frictional drag)}} {\hbox {(work done to produce both thrust and vortex wake)}}.$ The recommended procedure is for the fish to pass a wave down its body at a speed of around $\frac {5} {4}$ of the desired swimming speed, the amplitude increasing from zero over the front portion to a maximum at the tail, whose span should exceed a certain critical value, and the waveform including both a positive and a negative phase so that angular recoil is minimized. The Appendix gives a review of slender-body theory for deformable bodies.


1962 ◽  
Vol 66 (620) ◽  
pp. 528-530 ◽  
Author(s):  
H. Pearson

It is well known that the main purpose of the by-pass principle is to improve the propulsive efficiency of a simple jet engine by removing some of the energy left in the jet gases and using this to compress an extra quantity of air, known as the by-pass air, this air being ejected rearwards with the jet gases. In this way a greater mass of air is ejected rearwards at a lower jet velocity and thus a better propulsive efficiency is obtained. This is an extremely simplified view of the advantages of the by-pass engine, however, since an equivalent result of obtaining a lower jet velocity can be obtained by designing the jet engine for a lower combustion temperature. The by-pass principle is of advantage because it enables a higher propulsive efficiency to be obtained at the same time as employing a high combustion temperature and therefore a high basic cycle efficiency. If the component efficiencies of a gas turbine were 100 per cent, cycle efficiency would not depend upon combustion temperature at all, and there would thus be no advantage in principle in using the by-pass engine. In practice there would probably be some residual advantage left in that for a given thrust a lower engine weight could be obtained.


2009 ◽  
Vol 419-420 ◽  
pp. 785-788
Author(s):  
Xiu Fen Ye ◽  
Yu Dong Su ◽  
Shu Xiang Guo

An Ionic polymer metal composites (IPMC) actuated 3D swimming microrobot is presented first. Inspired by biologic fins, passive plastic fin is attached to the IPMC strip to increase the thrust. Infrared sensors are equipped for wireless control and autonomous navigation. Then propulsive efficiency analyses are carried out. From the water electrolysis influence analysis of the IPMC, the best working voltage is confirmed. Finally, a two parts IPMC actuator is presented to improve the propulsive efficiency of the microrobot after the analysis of propulsive efficiency of caudal fin.


1926 ◽  
Vol 43 (6) ◽  
pp. 785-795 ◽  
Author(s):  
E. E. Ecker ◽  
A. Rademaekers

Following intravenous injection, filtrates of young cultures of B. paratyphosus B often produce marked diarrhea in rabbits. A study was made of the effect of these toxic filtrates on the motility of the small intestines of the rabbit. The observations were made on a segment of the small intestines in situ, and in the living animal. It was found that an immediate slight rise of tone of the longitudinal muscles occurred following intravenous injection of sterile broth. The same rise was noted after the injection of the toxic filtrate; but with these it was followed later (10 minutes elapsing at least) by a very strong but gradual rise of the diastolic and systolic tone, i.e., by spasmodic contraction of the intestinal muscle, which persisted at times for as long as 2 hours. In order to record simultaneously the effect on the longitudinal and circular muscles, and the propulsive efficiency of the segment the Sollmann and Rademaekers modification of Baur's technique was employed. This arrangement showed that the stimulation of the longitudinal muscles is accompanied by a similarly strong stimulation of the circular muscles, by peristalsis, and therefore by a greatly increased propulsion of intestinal contents which was sufficient to overcome the inhibition that usually occurs after preparation of the animal. With this arrangement an instance of peristaltic spasm was also noted. Broth alone failed to produce the phenomenon. Isotonic magnesium chloride or sulfate added to the bath relaxed the muscles again. Animals under deep urethane anesthesia did not show the diarrhea occurring in the intact controls, but sometimes exhibited it after the effect of the anesthetic had disappeared. So far no effects have been observed on the isolated strip (Magnus method), and further studies are being made to localize the effect, to neutralize it with a specific antiserum, and to observe the effect of filtrates of other members of the bacterial group including the dysentery bacilli.


1998 ◽  
Vol 360 ◽  
pp. 41-72 ◽  
Author(s):  
J. M. ANDERSON ◽  
K. STREITLIEN ◽  
D. S. BARRETT ◽  
M. S. TRIANTAFYLLOU

Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.


AIAA Journal ◽  
10.2514/1.816 ◽  
2005 ◽  
Vol 43 (11) ◽  
pp. 2329-2336 ◽  
Author(s):  
Ismail H. Tuncer ◽  
Mustafa Kaya

Sign in / Sign up

Export Citation Format

Share Document