Design of the Lower Limb Rehabilitation Training System Based on Virtual Reality

Author(s):  
Jian Guo ◽  
Kai Zhao ◽  
Shuxiang Guo
2018 ◽  
Vol 7 (2.28) ◽  
pp. 119
Author(s):  
Hongbo Wang ◽  
Musong Lin ◽  
Zhennan Lin ◽  
Xincheng Wang ◽  
Jianye Niu ◽  
...  

This paper presents a virtual reality training system for the lower limb rehabilitation robot, which can simulate the bike riding and encourage patients to join in the recovery training through the built-in competitive game. The virtual reality training is a variable speed active training under the constraint trajectory, and it has adapting training posture function which can provide individual riding training track according to the legs length of patients. The movement synchronization between the robot and virtual model is achieved by interaction control strategy, and robot can change the training velocity based on the signal from feedback terrains in game. A serious game about bike match in forest was designed, and the user can select the training level as well as change perspective through the user interface. The training can be paused at any time, and the timer function could reflect the recovery of patient. 


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jing Chen

In order to make most patients recover most of their limb functions after rehabilitation training, virtual reality technology is an emerging human-computer interaction technology, which uses the computer and the corresponding application software to build the virtual reality environment. Completing the training tasks in the virtual environment attracts the patients to conduct repeated training in the game and task-based training mode and gradually realizes the rehabilitation training goals. For the rehabilitation population with certain exercise ability, the kinematics of human upper limbs is mainly analyzed, and the virtual reality system based on HTC VIVE is developed. The feasibility and work efficiency of the upper limb rehabilitation training system were verified by experiments. Adult volunteers who are healthy and need rehabilitation training to participate in the experiment were recruited, and experimental data were recorded. The virtual reality upper limb rehabilitation system was a questionnaire. By extracting the motion data, the system application effect is analyzed and evaluated by the simulation diagram. Follow-up results of rehabilitation training showed that the average score of healthy subjects was more than 4 points and 3.8 points per question. Therefore, it is feasible to perform upper limb rehabilitation training using the HTC VIVE virtual reality rehabilitation system.


2021 ◽  
pp. 1-44
Author(s):  
Chennan Yu ◽  
Jun Ye ◽  
Jiangming Jia ◽  
Xiong Zhao ◽  
Zhiwei Chen ◽  
...  

Abstract A foot-driven rehabilitation mechanism is suitable for home healthcare due to its advantages of simplicity, effectiveness, small size, and low price. However, most of the existing studies on lower limb rehabilitation movement only consider the trajectory of the ankle joint and ignore the influence of its posture angle, which makes it difficult to ensure the rotation requirements of the ankle joint and achieve a better rehabilitation effect. Aiming at the shortcomings of the current research, this paper proposes a new single degree-of-freedom (DOF) configuration that uses a noncircular gear train to constrain the three revolute joints (3R) open-chain linkage and expounds its dimensional synthesis method. Then, a parameter optimization model of the mechanism is established, and the genetic algorithm is used to optimize the mechanism parameters. According to the eight groups of key poses and position points of the ankle joint and the toe, the different configurations of the rehabilitation mechanism are synthesized and compared, and it is concluded that the newly proposed 3R open-chain noncircular gear-linkage mechanism exhibits better performance. Finally, combined with the requirements of rehabilitation training, a lower limb rehabilitation training device is designed based on this new configuration, and a prototype is developed and tested. The test results show that the device can meet the requirements of the key position points and posture angles of the ankle joint and the toe and verify the correctness of the proposed dimensional synthesis and optimization methods.


2019 ◽  
Vol 33 (11) ◽  
pp. 5461-5472 ◽  
Author(s):  
Yan-lin Wang ◽  
Ke-yi Wang ◽  
Wan-li Wang ◽  
Peng-cheng Yin ◽  
Zhuang Han

2014 ◽  
Vol 926-930 ◽  
pp. 1144-1147
Author(s):  
Lei Chen ◽  
Chang Niu Yang ◽  
Wen Quan Huang ◽  
Ze Gang Sun ◽  
Yu Cong Liu

To solve the rehabilitation evaluation problem of rehabilitation training, a rehabilitation evaluation method based on fuzzy comprehensive evaluation was presented for 6-DOF wearable lower limb rehabilitation robot. Relative degradation degree was introduced to represent the transformation of the actual state of rehabilitation training and the very poor rehabilitation. On the basis, Rehabilitation evaluation model was built based on fuzzy comprehensive evaluation, each layer of which was evaluated respectively, and suggests rehabilitation evaluation results of a lower limb rehabilitation robot. The instance analysis shows that the method is reasonable and effective.


Sign in / Sign up

Export Citation Format

Share Document