A Study on an Evaluation Method of a Rehabilitation Robot Based on Fuzzy Comprehensive Evaluation

2014 ◽  
Vol 926-930 ◽  
pp. 1144-1147
Author(s):  
Lei Chen ◽  
Chang Niu Yang ◽  
Wen Quan Huang ◽  
Ze Gang Sun ◽  
Yu Cong Liu

To solve the rehabilitation evaluation problem of rehabilitation training, a rehabilitation evaluation method based on fuzzy comprehensive evaluation was presented for 6-DOF wearable lower limb rehabilitation robot. Relative degradation degree was introduced to represent the transformation of the actual state of rehabilitation training and the very poor rehabilitation. On the basis, Rehabilitation evaluation model was built based on fuzzy comprehensive evaluation, each layer of which was evaluated respectively, and suggests rehabilitation evaluation results of a lower limb rehabilitation robot. The instance analysis shows that the method is reasonable and effective.

2021 ◽  
Vol 11 (2) ◽  
pp. 867
Author(s):  
Mingda Miao ◽  
Xueshan Gao ◽  
Wei Zhu

In response to the rehabilitation needs of stroke patients who are unable to benefit from conventional rehabilitation due to the COVID-19 epidemic, this paper designs a robot that combines on-site and telerehabilitation. The objective is to assist the patient in walking. We design the electromechanical system with a gantry mechanism, body-weight support system, information feedback system, and man-machine interactive control system. The proposed rehabilitation robot remote system is based on the client/server (C/S) network framework to realize the remote control of the robot state logic and the transmission of patient training data. Based on the proposed system, doctors can set or adjust the training modes and control the parameters of the robot and guide remote patient rehabilitation training through video communication. The robotic system can further store and manage the rehabilitation data of the patient during training. Experiments show the human-computer interaction system of the lower limb rehabilitation robot has good performance, can accurately recognize the information of human motion posture, and achieve the goal of actively the following motion. Experiments confirm the feasibility of the proposed design, the information management of stroke patients, and the efficiency of rehabilitation training. The proposed system can reduce the workload of the doctors in practical training.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3439 ◽  
Author(s):  
Yongfei Feng ◽  
Hongbo Wang ◽  
Luige Vladareanu ◽  
Zheming Chen ◽  
Di Jin

The rehabilitation robot is an application of robotic technology for people with limb disabilities. This paper investigates a new applicable and effective sitting/lying lower limb rehabilitation robot (the LLR-Ro). In order to improve the patient’s training initiative and accelerate the rehabilitation process, a new motion intention acquisition method based on static torque sensors is proposed. This motion intention acquisition method is established through the dynamics modeling of human–machine coordination, which is built on the basis of Lagrangian equations. Combined with the static torque sensors installed on the mechanism leg joint axis, the LLR-Ro can obtain the active force from the patient’s leg. Based on the variation of the patient’s active force and the kinematic functional relationship of the patient’s leg end point, the patient motion intention is obtained and used in the proposed active rehabilitation training method. The simulation experiment demonstrates the correctness of mechanism leg dynamics equations through ADAMS software and MATLAB software. The calibration experiment of the joint torque sensors’ combining limit range filter with an average value filter provides the hardware support for active rehabilitation training. The consecutive variation of the torque sensors from just the mechanism leg weight, as well as both the mechanism leg and the patient leg weights, obtains the feasibility of lower limb motion intention acquisition.


2013 ◽  
Vol 655-657 ◽  
pp. 1158-1163
Author(s):  
Jing Wen Wu ◽  
Lin Yong Shen ◽  
Ya Nan Zhang ◽  
Jin Wu Qian

Robot-assisted rehabilitation training on a treadmill is a popular research direction in recent years. And it will replace the artificial rehabilitation training to become a major rehabilitation training method for patients with lower limb action impairments. However, in the existing rehabilitation system, treadmill run in the constant speed. It has to change the speed manually rather than adjust according to the patients’ active consciousness. In the paper, we proposed a treadmill speed adaption control method for Lower Limb Rehabilitation Robot. A pull pressure sensor is used to detect human’s movement trends. The data are calculated through non-linear gain and then sent to the speed controller in the treadmill according to the characteristics that the hip of human body is fixed on the robot in the walking direction of the sagittal plane. Based on this principle, we designed a force measurement structure and verified the control method by experiment. The result shows that the control method can satisfy adaptive control of the treadmill speed.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877586 ◽  
Author(s):  
Ke-Yi Wang ◽  
Peng-Cheng Yin ◽  
Hai-Peng Yang ◽  
Xiao-Qiang Tang

At present, in view of the question that the general lower limb rehabilitation training robot is only achieving motion training of lower limb’s flexion and extension. A kind of the lower limb rehabilitation robot is conceived which can achieve lower limb adduction or abduction and internal or external rotation in sports training, and it is aimed to research the robot’s structure and motion planning. When analyzing the typical movement forms of the lower limb, the relation of man–machine coordinated movement is also considered. A kind of lower limb rehabilitation training robot is conceived, which consists of the rigid mobile device and the flexible drive system. The influence coefficient method is used to analyze the kinematics of the robot. According to the rehabilitation training of man–machine cooperation relations, the trajectory planning strategy is studied. A robot configuration that meets the needs of rehabilitation motion trajectory planning is drawn by setting the parameters of the robot mechanism and simulation. According to the trajectory of the training program, the simulation analysis of the state of wire movement is carried out. The experimental study of adduction and abduction of the lower extremities was carried out, proving the effectiveness of robot mechanism.


Author(s):  
Jingang Jiang ◽  
Xuefeng Ma ◽  
Biao Huo ◽  
Xiaoyang Yu ◽  
Xiaowei Guo ◽  
...  

2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2017 ◽  
Vol 11 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Vahab Khoshdel ◽  
Alireza Akbarzadeh ◽  
Nadia Naghavi ◽  
Ali Sharifnezhad ◽  
Mahdi Souzanchi-Kashani

Sign in / Sign up

Export Citation Format

Share Document