Unloaded quality factor of a substrate integrated waveguide resonator and its variation with the substrate parameters

Author(s):  
Arani Ali Khan ◽  
Mrinal Kanti Mandal ◽  
Subrata Sanyal
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew W. Puckett ◽  
Kaikai Liu ◽  
Nitesh Chauhan ◽  
Qiancheng Zhao ◽  
Naijun Jin ◽  
...  

AbstractHigh quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. Integration in a photonic waveguide platform is key to reducing cost, size, power and sensitivity to environmental disturbances. However, to date, the Q of all-waveguide resonators has been relegated to below 260 Million. Here, we report a Si3N4 resonator with 422 Million intrinsic and 3.4 Billion absorption-limited Qs. The resonator has 453 kHz intrinsic, 906 kHz loaded, and 57 kHz absorption-limited linewidths and the corresponding 0.060 dB m−1 loss is the lowest reported to date for waveguides with deposited oxide upper cladding. These results are achieved through a careful reduction of scattering and absorption losses that we simulate, quantify and correlate to measurements. This advancement in waveguide resonator technology paves the way to all-waveguide Billion Q cavities for applications including nonlinear optics, atomic clocks, quantum photonics and high-capacity fiber communications.


1999 ◽  
Vol 14 (2) ◽  
pp. 500-502
Author(s):  
Seungbum Hong ◽  
Eunah Kim ◽  
Han Wook Song ◽  
Jongwan Choi ◽  
Dae-Weon Kim ◽  
...  

It has been generally accepted that the product of the unloaded quality factor and resonant frequency is the universal parameter for comparison of dielectric resonators with different size.1,2 However, it is suggested in this study that this universal parameter should be modified due to the presence of the polarons. From the frequency dependence of the unloaded quality factor, it is possible to extract the factor determined only by the phonon scattering effects, and we denoted this parameter by Qs. It was found that the Qs parameter for ZrxSnzTiyO4 (ZST) and Ba(Zn1/3Ta2/3)O3 (BZT) ceramics showed constancy in the frequency range of 2–12 GHz, which supports the idea of polaron conduction loss contribution to the dielectric loss.


2010 ◽  
Vol 21 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Hassan Khalil ◽  
Stéphane Bila ◽  
Michel Aubourg ◽  
Dominique Baillargeat ◽  
Serge Verdeyme ◽  
...  

Author(s):  
Tianyu Zheng ◽  
Massimiliano Casaletti ◽  
Zhuoxiang Ren ◽  
Ahmed F. Abdelshafy ◽  
Filippo Capolino ◽  
...  

2019 ◽  
Vol 12 (4) ◽  
pp. 288-292
Author(s):  
Kaijun Song ◽  
Mou Luo ◽  
Cuilin Zhong ◽  
Yuxuan Chen

AbstractA high-isolation diplexer based on a dual-mode substrate integrated waveguide (SIW) resonator is proposed in this paper. Based on the theory of the dual-mode resonator, the miniaturized diplexers are designed by using the SIW dual-mode resonators. The superior isolation of the diplexers is obtained because the two operating modes of the dual-mode SIW resonators are not directly coupled and there is no interference with each other. In order to further improve the isolation of the circuit, the number of the order of the diplexer is added. Equivalent circuits are given to analyze and design the dual-mode high-isolation diplexers. Detailed analyses are given according to the equivalent circuits. The dual-mode third-order and fourth-order diplexers are designed and fabricated. The measured results agree well with the simulated ones. The total sizes of the fabricated third-order and fourth-order diplexers are 1.78λg × 2.64λg and 1.79λg × 3.63λg, respectively.


Sign in / Sign up

Export Citation Format

Share Document