African Buffalo Optimization Algorithm for Personalized Diet Optimization

Author(s):  
Asegunloluwa Eunice Babalola ◽  
Bolanle Adefowoke Ojokoh ◽  
Julius Beneoluchi Odili
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Julius Beneoluchi Odili ◽  
Mohd Nizam Mohmad Kahar

This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman’s Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd’s collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Julius Beneoluchi Odili ◽  
A. Noraziah ◽  
M. Zarina

This paper presents a comparative performance analysis of some metaheuristics such as the African Buffalo Optimization algorithm (ABO), Improved Extremal Optimization (IEO), Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO), Max-Min Ant System (MMAS), Cooperative Genetic Ant System (CGAS), and the heuristic, Randomized Insertion Algorithm (RAI) to solve the asymmetric Travelling Salesman Problem (ATSP). Quite unlike the symmetric Travelling Salesman Problem, there is a paucity of research studies on the asymmetric counterpart. This is quite disturbing because most real-life applications are actually asymmetric in nature. These six algorithms were chosen for their performance comparison because they have posted some of the best results in literature and they employ different search schemes in attempting solutions to the ATSP. The comparative algorithms in this study employ different techniques in their search for solutions to ATSP: the African Buffalo Optimization employs the modified Karp–Steele mechanism, Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO) employs the path construction with patching technique, Cooperative Genetic Ant System uses natural selection and ordering; Randomized Insertion Algorithm uses the random insertion approach, and the Improved Extremal Optimization uses the grid search strategy. After a number of experiments on the popular but difficult 15 out of the 19 ATSP instances in TSPLIB, the results show that the African Buffalo Optimization algorithm slightly outperformed the other algorithms in obtaining the optimal results and at a much faster speed.


2020 ◽  
Vol 24 (21) ◽  
pp. 16627-16641
Author(s):  
Walaa H. El-Ashmawi ◽  
Ahmed F. Ali ◽  
Adam Slowik

Abstract Forming a team of experts that can match the requirements of a collaborative task is an important aspect, especially in project development. In this paper, we propose an improved Jaya optimization algorithm for minimizing the communication cost among team experts to solve team formation problem. The proposed algorithm is called an improved Jaya algorithm with a modified swap operator (IJMSO). We invoke a single-point crossover in the Jaya algorithm to accelerate the search, and we apply a new swap operator within Jaya algorithm to verify the consistency of the capabilities and the required skills to carry out the task. We investigate the IJMSO algorithm by implementing it on two real-life datasets (i.e., digital bibliographic library project and StackExchange) to evaluate the accuracy and efficiency of proposed algorithm against other meta-heuristic algorithms such as genetic algorithm, particle swarm optimization, African buffalo optimization algorithm and standard Jaya algorithm. Experimental results suggest that the proposed algorithm achieves significant improvement in finding effective teams with minimum communication costs among team members for achieving the goal.


Sign in / Sign up

Export Citation Format

Share Document