Multi-objective optimal dispatch of power systems integrated with intermittent renewable energy considering demand response

Author(s):  
Yonggang Peng ◽  
Jingxin Zhang ◽  
Miao Yu ◽  
Wei Wei
Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1037 ◽  
Author(s):  
Arslan Bashir ◽  
Matti Lehtonen

Current energy policy-driven targets have led to increasing deployment of renewable energy sources in electrical grids. However, due to the limited flexibility of current power systems, the rapidly growing number of installations of renewable energy systems has resulted in rising levels of generation curtailments. This paper probes the benefits of simultaneously coordinating aggregated hydro-reservoir storage with residential demand response (DR) for mitigating both load and generation curtailments in highly renewable generation power systems. DR services are provided by electric water heaters, thermal storages, electric vehicles, and heating, ventilation and air-conditioning (HVAC) loads. Accordingly, an optimization model is presented to minimize the mismatch between demand and supply in the Finnish power system. The model considers proportions of base-load generation comprising nuclear, and combined heat and power (CHP) plants (both CHP-city and CHP-industry), as well as future penetration scenarios of solar and wind power that are constructed, reflecting the present generation structure in Finland. The findings show that DR coordinated with hydropower is an efficient curtailment mitigation tool given the uncertainty in renewable generation. A comprehensive sensitivity analysis is also carried out to depict how higher penetration can reduce carbon emissions from electricity co-generation in the near future.


2021 ◽  
Vol 13 (23) ◽  
pp. 13350
Author(s):  
Haiteng Han ◽  
Chen Wu ◽  
Zhinong Wei ◽  
Haixiang Zang ◽  
Guoqiang Sun ◽  
...  

In modern power systems with more renewable energy sources connected, the consideration of both security and economy becomes the key to research on power system optimal dispatch, especially when more participants from the source and load sides join in the interaction response activities. In this paper, we propose a two-stage dispatch model that contains a day-ahead multi-objective optimization scheduling sub-model that combines a hyper-box and hyper-ellipse space theory-based system security index in the first stage, and an intraday adjustment scheduling sub-model that considers active demand response (DR) behavior in the second stage. This model is able to quantitatively analyze the relationship between the security and economy of the system dispatch process, as well as the impacts of the interaction response behavior on the wind power consumption and the system’s daily operating cost. The model can be applied to the evaluation of the response mechanism design for interactive resources in regional power systems.


2021 ◽  
Author(s):  
Flávio Leite Loução Junior ◽  
Marlon Sproesser Mathias ◽  
Claudia Sagastizábal ◽  
Luiz-Rafael Santos ◽  
Francisco Nogueira Calmon Sobral

In partnership with CCEE, CEPEL and RADIX as industrial partners, in 2021 the study group focused on the dynamics of hourly prices when industrial consumers are demand responsive, as a follow-up of the industrial problem tackled in 2018 and 2019, on ``Day-ahead pricing mechanisms for hydro-thermal power systems''. Demand response is currently being tested by the Brazilian independent system operator and by the trading chamber, ONS. The program considers reductions of consumption of some clients as an alternative to dispatching thermal power plants out of the merit order. The day-ahead problem of finding optimal dispatch and prices for the Brazilian system is modelled as a mixed-integer linear programming problem, with non-convexities related to fixed costs and minimal generation requirements for some thermal power plants. The work focuses on the point of view of an individual hydro-power generator, to determine business opportunities related to adhering to a demand response program.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 143 ◽  
Author(s):  
Gerardo J. Osório ◽  
Miadreza Shafie-khah ◽  
Mohamed Lotfi ◽  
Bernardo J. M. Ferreira-Silva ◽  
João P. S. Catalão

The integration of renewable energy resources (RES) (such as wind and photovoltaic (PV)) on large or small scales, in addition to small generation units, and individual producers, has led to a large variation in energy production, adding uncertainty to power systems (PS) due to the inherent stochasticity of natural resources. The implementation of demand-side management (DSM) in distribution grids (DGs), enabled by intelligent electrical devices and advanced communication infrastructures, ensures safer and more economical operation, giving more flexibility to the intelligent smart grid (SG), and consequently reducing pollutant emissions. Consumers play an active and key role in modern SG as small producers, using RES or through participation in demand response (DR) programs. In this work, the proposed DSM model follows a two-stage stochastic approach to deal with uncertainties associated with RES (wind and PV) together with demand response aggregators (DRA). Three types of DR strategies offered to consumers are compared. Nine test cases are modeled, simulated, and compared in order to analyze the effects of the different DR strategies. The purpose of this work is to minimize DG operating costs from the Distribution System Operator (DSO) point-of-view, through the analysis of different levels of DRA presence, DR strategies, and price variations.


Sign in / Sign up

Export Citation Format

Share Document