scholarly journals A Two-Stage Cooperative Dispatch Model for Power Systems Considering Security and Source-Load Interaction

2021 ◽  
Vol 13 (23) ◽  
pp. 13350
Author(s):  
Haiteng Han ◽  
Chen Wu ◽  
Zhinong Wei ◽  
Haixiang Zang ◽  
Guoqiang Sun ◽  
...  

In modern power systems with more renewable energy sources connected, the consideration of both security and economy becomes the key to research on power system optimal dispatch, especially when more participants from the source and load sides join in the interaction response activities. In this paper, we propose a two-stage dispatch model that contains a day-ahead multi-objective optimization scheduling sub-model that combines a hyper-box and hyper-ellipse space theory-based system security index in the first stage, and an intraday adjustment scheduling sub-model that considers active demand response (DR) behavior in the second stage. This model is able to quantitatively analyze the relationship between the security and economy of the system dispatch process, as well as the impacts of the interaction response behavior on the wind power consumption and the system’s daily operating cost. The model can be applied to the evaluation of the response mechanism design for interactive resources in regional power systems.

2021 ◽  
Vol 252 ◽  
pp. 03011
Author(s):  
Jianfeng Yang ◽  
Tianxiang Xie ◽  
Chang Zhang ◽  
Jie Dong ◽  
Jianhao Zhang ◽  
...  

The integrated community energy system (ICES) has aroused considerable attention for its low emission and high operating efficiency. The existing configuration methods for ICES with multi-energy sectors ignored the controllable load. In this paper, a two-stage configuration method of ICES is developed to achieve the minimum annual investing and operating cost. At the first stage, the capacities of components in ICES are optimized to minimize the annual investment cost of ICES. At the second stage, the annual operating cost including the electricity and gas purchase costs and the component maintenance cost is minimized to satisfy the energy load. The controllable load under the time-of-use energy price in seasonal typical days is considered in the second stage. Relevant simulations are conducted to validate the effectiveness of the proposed configuration method for ICES. Considering the controllable load, comparative simulations illustrate that the proposed configuration method can significantly reduce the battery investment cost.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yuling Li ◽  
Xiaoying Wang ◽  
Peicong Luo

Modern smart grids have proposed a series of demand response (DR) programs and encourage users to participate in them with the purpose of maintaining reliability and efficiency so as to respond to the sustainable development of demand-side management. As a large load of the smart grid, a datacenter could be regarded as a potential demand response participant. Encouraging datacenters to participate in demand response programs can help the grid to achieve better load balancing effect, while the datacenter can also reduce its own power consumption so as to save electricity costs. In this paper, we designed a demand response participation strategy based on two-stage decisions to reduce the total cost of the datacenter while considering the DR requirements of the grid. The first stage determines whether to participate in demand response by predicting real-time electricity prices of the power grid and incentive information will be sent to encourage users to participate in the program to help shave the peak load. In the second stage, the datacenter interacts with its users by allowing users to submit bid information by reverse auction. Then, the datacenter selects the tasks of the winning users to postpone processing them with awards. Experimental results show that the proposed strategy could help the datacenter to reduce its cost and effectively meet the demand response requirements of the smart grid at the same time.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1037 ◽  
Author(s):  
Arslan Bashir ◽  
Matti Lehtonen

Current energy policy-driven targets have led to increasing deployment of renewable energy sources in electrical grids. However, due to the limited flexibility of current power systems, the rapidly growing number of installations of renewable energy systems has resulted in rising levels of generation curtailments. This paper probes the benefits of simultaneously coordinating aggregated hydro-reservoir storage with residential demand response (DR) for mitigating both load and generation curtailments in highly renewable generation power systems. DR services are provided by electric water heaters, thermal storages, electric vehicles, and heating, ventilation and air-conditioning (HVAC) loads. Accordingly, an optimization model is presented to minimize the mismatch between demand and supply in the Finnish power system. The model considers proportions of base-load generation comprising nuclear, and combined heat and power (CHP) plants (both CHP-city and CHP-industry), as well as future penetration scenarios of solar and wind power that are constructed, reflecting the present generation structure in Finland. The findings show that DR coordinated with hydropower is an efficient curtailment mitigation tool given the uncertainty in renewable generation. A comprehensive sensitivity analysis is also carried out to depict how higher penetration can reduce carbon emissions from electricity co-generation in the near future.


2021 ◽  
Author(s):  
Flávio Leite Loução Junior ◽  
Marlon Sproesser Mathias ◽  
Claudia Sagastizábal ◽  
Luiz-Rafael Santos ◽  
Francisco Nogueira Calmon Sobral

In partnership with CCEE, CEPEL and RADIX as industrial partners, in 2021 the study group focused on the dynamics of hourly prices when industrial consumers are demand responsive, as a follow-up of the industrial problem tackled in 2018 and 2019, on ``Day-ahead pricing mechanisms for hydro-thermal power systems''. Demand response is currently being tested by the Brazilian independent system operator and by the trading chamber, ONS. The program considers reductions of consumption of some clients as an alternative to dispatching thermal power plants out of the merit order. The day-ahead problem of finding optimal dispatch and prices for the Brazilian system is modelled as a mixed-integer linear programming problem, with non-convexities related to fixed costs and minimal generation requirements for some thermal power plants. The work focuses on the point of view of an individual hydro-power generator, to determine business opportunities related to adhering to a demand response program.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 143 ◽  
Author(s):  
Gerardo J. Osório ◽  
Miadreza Shafie-khah ◽  
Mohamed Lotfi ◽  
Bernardo J. M. Ferreira-Silva ◽  
João P. S. Catalão

The integration of renewable energy resources (RES) (such as wind and photovoltaic (PV)) on large or small scales, in addition to small generation units, and individual producers, has led to a large variation in energy production, adding uncertainty to power systems (PS) due to the inherent stochasticity of natural resources. The implementation of demand-side management (DSM) in distribution grids (DGs), enabled by intelligent electrical devices and advanced communication infrastructures, ensures safer and more economical operation, giving more flexibility to the intelligent smart grid (SG), and consequently reducing pollutant emissions. Consumers play an active and key role in modern SG as small producers, using RES or through participation in demand response (DR) programs. In this work, the proposed DSM model follows a two-stage stochastic approach to deal with uncertainties associated with RES (wind and PV) together with demand response aggregators (DRA). Three types of DR strategies offered to consumers are compared. Nine test cases are modeled, simulated, and compared in order to analyze the effects of the different DR strategies. The purpose of this work is to minimize DG operating costs from the Distribution System Operator (DSO) point-of-view, through the analysis of different levels of DRA presence, DR strategies, and price variations.


2019 ◽  
Vol 87 ◽  
pp. 01007 ◽  
Author(s):  
Surender Reddy Salkuti

This paper proposes a new optimal operation of Microgrids (MGs) in a distribution system with wind energy generators (WEGs), solar photovoltaic (PV) energy systems, battery energy storage (BES) systems, electric vehicles (EVs) and demand response (DR). To reduce the fluctuations of wind, solar PV powers and load demands, the BES systems and DR are utilized in the proposed hybrid system. The detailed modeling of WEGs, solar PV units, load demands, BES systems and EVs has been presented in this paper. The objective considered here is the minimization of total operating cost of microgrid, and it is formulated by considering the cost of power exchange between the main power grid and microgrid, cost of wind and solar PV energy systems, cost of BES systems, EVs and the cost due to the DR in the system. Simulations are performed on a test microgrid, and they are implemented using GAMS software. Various case studies are performed with and without considering the proposed hybrid system.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5700
Author(s):  
Semen Uimonen ◽  
Matti Lehtonen

Transportation vehicles are a large contributor of the carbon dioxide emissions to the atmosphere. Electric Vehicles (EVs) are a promising solution to reduce the CO2 emissions which, however, requires the right electric power production mix for the largest impact. The increase in the electric power consumption caused by the EV charging demand could be matched by the growing share of Renewable Energy Sources (RES) in the power production. EVs are becoming a popular sustainable mean of transportation and the expansion of EV units due to the stochastic nature of charging behavior and increasing share of RES creates additional challenges to the stability in the power systems. Modeling of EV charging fleets allows understanding EV charging capacity and demand response (DR) potential of EV in the power systems. This article focuses on modeling of daily EV charging profiles for buildings with various number of chargers and daily events. The article presents a modeling approach based on the charger occupancy data from the local charging sites. The approach allows one to simulate load profiles and to find how many chargers are necessary to suffice the approximate demand of EV charging from the traffic characteristics, such as arrival time, duration of charging, and maximum charging power. Additionally, to better understand the potential impact of demand response, the modeling approach allows one to compare charging profiles, while adjusting the maximum power consumption of chargers.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6628
Author(s):  
Chiara Magni ◽  
Alessia Arteconi ◽  
Konstantinos Kavvadias ◽  
Sylvain Quoilin

The EU aims to become the world’s first climate-neutral continent by 2050. In order to meet this target, the integration of high shares of Renewable Energy Sources (RESs) in the energy system is of primary importance. Nevertheless, the large deployment of variable renewable sources such as wind and photovoltaic power will pose important challenges in terms of power management. For this reason, increasing the system flexibility will be crucial to ensure the security of supply in future power systems. This work investigates the flexibility potential obtainable from the diffusion of Demand Response (DR) programmes applied to residential heating for different renewables penetration and power system configuration scenarios. To that end, a bottom-up model for residential heat demand and flexible electric heating systems (heat pumps and electric water heaters) is developed and directly integrated into Dispa-SET, an existing unit commitment optimal dispatch model of the power system. The integrated model is calibrated for the case of Belgium and different simulations are performed varying the penetration and type of residential heating technologies, installed renewables capacity and capacity mix. Results show that, at country level, operational cost could be reduced up to €35 million and curtailment up to 1 TWh per year with 1 million flexible electric heating systems installed. These benefits are significantly reduced when nuclear power plants (non-flexible) are replaced by gas-fired units (flexible) and grow when more renewable capacity is added. Moreover, when the number of flexible heating systems increases, a saturation effect of the flexibility is observed.


Sign in / Sign up

Export Citation Format

Share Document