Prediction System of Burning Through Point (BTP) Based on Adaptive Pattern Clustering and Feature Map

Author(s):  
Wu-shan Cheng
2008 ◽  
Vol 2008 ◽  
pp. 1-9
Author(s):  
Wushan Cheng

A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map (APCFM) is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ), the sintering process is divided automatically into subclasses which have similar clustering center and labeled fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN) to be trained; this network is used to solve the prediction problem of the burning through point (BTP). Using the 707 groups of actual training process data and the FNN to train APCFM algorithm, experiments prove that the system has stronger robustness and wide generality in clustering analysis and feature extraction.


1992 ◽  
Vol 03 (01) ◽  
pp. 57-63 ◽  
Author(s):  
Eamon P. Fulcher

WIS-ART merges the self-organising properties of Adaptive Resonance Theory (ART) with the operation of WISARD, an adaptive pattern recognition machine which uses discriminators of conventional Random Access Memories (RAMs). The result is an unsupervised pattern clustering system operating at near real-time that implements the leader algorithm. ART’s clustering is highly dependent upon the value of a “vigilance” parameter, which is set prior to training. However, for WIS-ART hierarchical clustering is performed automatically by the partitioning of discriminators into “multi-vigilance modules”. Thus, clustering may be controlled during the test phase according to the degree of discrimination (hierarchical level) required. Methods for improving the clustering characteristics of WIS-ART whilst still retaining stability are discussed.


1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Konrad Nering

AbstractThis paper describes a fully functional short-term flood prediction system. Its effect has been tested on watershed of Lubieńka river in Małopolska. To use this system it must have a data set also described in this paper. A modification of the system to adopt for predicting flash floods was described. Full operation of the system is shown on example of real flood on Lubieńka river in June 2011.


2018 ◽  
Vol 15 (2) ◽  
pp. 696-699
Author(s):  
Kalyani Shahaji Zodage ◽  
Puja Sarage ◽  
Trupti Sudrik ◽  
Rashmi Sonawane

Sign in / Sign up

Export Citation Format

Share Document