Neural machine translation research based on the semantic vector of the tri-lingual parallel corpus

Author(s):  
Xiao-Xue Wang ◽  
Cong-Hui Zhu ◽  
Sheng Li ◽  
Tie-Jun Zhao ◽  
De-Quan Zheng
Author(s):  
Rashmini Naranpanawa ◽  
Ravinga Perera ◽  
Thilakshi Fonseka ◽  
Uthayasanker Thayasivam

Neural machine translation (NMT) is a remarkable approach which performs much better than the Statistical machine translation (SMT) models when there is an abundance of parallel corpus. However, vanilla NMT is primarily based upon word-level with a fixed vocabulary. Therefore, low resource morphologically rich languages such as Sinhala are mostly affected by the out of vocabulary (OOV) and Rare word problems. Recent advancements in subword techniques have opened up opportunities for low resource communities by enabling open vocabulary translation. In this paper, we extend our recently published state-of-the-art EN-SI translation system using the transformer and explore standard subword techniques on top of it to identify which subword approach has a greater effect on English Sinhala language pair. Our models demonstrate that subword segmentation strategies along with the state-of-the-art NMT can perform remarkably when translating English sentences into a rich morphology language regardless of a large parallel corpus.


Author(s):  
Mehreen Alam ◽  
Sibt ul Hussain

Attention-based encoder-decoder models have superseded conventional techniques due to their unmatched performance on many neural machine translation problems. Usually, the encoders and decoders are two recurrent neural networks where the decoder is directed to focus on relevant parts of the source language using attention mechanism. This data-driven approach leads to generic and scalable solutions with no reliance on manual hand-crafted features. To the best of our knowledge, none of the modern machine translation approaches has been applied to address the research problem of Urdu machine transliteration. Ours is the first attempt to apply the deep neural network-based encoder-decoder using attention mechanism to address the aforementioned problem using Roman-Urdu and Urdu parallel corpus. To this end, we present (i) the first ever Roman-Urdu to Urdu parallel corpus of 1.1 million sentences, (ii) three state of the art encoder-decoder models, and (iii) a detailed empirical analysis of these three models on the Roman-Urdu to Urdu parallel corpus. Overall, attention-based model gives state-of-the-art performance with the benchmark of 70 BLEU score. Our qualitative experimental evaluation shows that our models generate coherent transliterations which are grammatically and logically correct.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Syed Abdul Basit Andrabi ◽  
Abdul Wahid

Machine translation is an ongoing field of research from the last decades. The main aim of machine translation is to remove the language barrier. Earlier research in this field started with the direct word-to-word replacement of source language by the target language. Later on, with the advancement in computer and communication technology, there was a paradigm shift to data-driven models like statistical and neural machine translation approaches. In this paper, we have used a neural network-based deep learning technique for English to Urdu languages. Parallel corpus sizes of around 30923 sentences are used. The corpus contains sentences from English-Urdu parallel corpus, news, and sentences which are frequently used in day-to-day life. The corpus contains 542810 English tokens and 540924 Urdu tokens, and the proposed system is trained and tested using 70 : 30 criteria. In order to evaluate the efficiency of the proposed system, several automatic evaluation metrics are used, and the model output is also compared with the output from Google Translator. The proposed model has an average BLEU score of 45.83.


2020 ◽  
pp. 1-22
Author(s):  
Sukanta Sen ◽  
Mohammed Hasanuzzaman ◽  
Asif Ekbal ◽  
Pushpak Bhattacharyya ◽  
Andy Way

Abstract Neural machine translation (NMT) has recently shown promising results on publicly available benchmark datasets and is being rapidly adopted in various production systems. However, it requires high-quality large-scale parallel corpus, and it is not always possible to have sufficiently large corpus as it requires time, money, and professionals. Hence, many existing large-scale parallel corpus are limited to the specific languages and domains. In this paper, we propose an effective approach to improve an NMT system in low-resource scenario without using any additional data. Our approach aims at augmenting the original training data by means of parallel phrases extracted from the original training data itself using a statistical machine translation (SMT) system. Our proposed approach is based on the gated recurrent unit (GRU) and transformer networks. We choose the Hindi–English, Hindi–Bengali datasets for Health, Tourism, and Judicial (only for Hindi–English) domains. We train our NMT models for 10 translation directions, each using only 5–23k parallel sentences. Experiments show the improvements in the range of 1.38–15.36 BiLingual Evaluation Understudy points over the baseline systems. Experiments show that transformer models perform better than GRU models in low-resource scenarios. In addition to that, we also find that our proposed method outperforms SMT—which is known to work better than the neural models in low-resource scenarios—for some translation directions. In order to further show the effectiveness of our proposed model, we also employ our approach to another interesting NMT task, for example, old-to-modern English translation, using a tiny parallel corpus of only 2.7K sentences. For this task, we use publicly available old-modern English text which is approximately 1000 years old. Evaluation for this task shows significant improvement over the baseline NMT.


2020 ◽  
pp. 1-11
Author(s):  
Lin Lin ◽  
Jie Liu ◽  
Xuebing Zhang ◽  
Xiufang Liang

Due to the complexity of English machine translation technology and its broad application prospects, many experts and scholars have invested more energy to analyze it. In view of the complex and changeable English forms, the large difference between Chinese and English word order, and insufficient Chinese-English parallel corpus resources, this paper uses deep learning to complete the conversion between Chinese and English. The research focus of this paper is how to use language pairs with rich parallel corpus resources to improve the performance of Chinese-English neural machine translation, that is, to use multi-task learning to train neural machine translation models. Moreover, this research proposes a low-resource neural machine translation method based on weight sharing, which uses the weight-sharing method to improve the performance of Chinese-English low-resource neural machine translation. In addition, this study designs a control experiment to analyze the effectiveness of this study model. The research results show that the model proposed in this paper has a certain effect.


Author(s):  
Rupjyoti Baruah ◽  
Rajesh Kumar Mundotiya ◽  
Anil Kumar Singh

Machine translation (MT) systems have been built using numerous different techniques for bridging the language barriers. These techniques are broadly categorized into approaches like Statistical Machine Translation (SMT) and Neural Machine Translation (NMT). End-to-end NMT systems significantly outperform SMT in translation quality on many language pairs, especially those with the adequate parallel corpus. We report comparative experiments on baseline MT systems for Assamese to other Indo-Aryan languages (in both translation directions) using the traditional Phrase-Based SMT as well as some more successful NMT architectures, namely basic sequence-to-sequence model with attention, Transformer, and finetuned Transformer. The results are evaluated using the most prominent and popular standard automatic metric BLEU (BiLingual Evaluation Understudy), as well as other well-known metrics for exploring the performance of different baseline MT systems, since this is the first such work involving Assamese. The evaluation scores are compared for SMT and NMT models for the effectiveness of bi-directional language pairs involving Assamese and other Indo-Aryan languages (Bangla, Gujarati, Hindi, Marathi, Odia, Sinhalese, and Urdu). The highest BLEU scores obtained are for Assamese to Sinhalese for SMT (35.63) and the Assamese to Bangla for NMT systems (seq2seq is 50.92, Transformer is 50.01, and finetuned Transformer is 50.19). We also try to relate the results with the language characteristics, distances, family trees, domains, data sizes, and sentence lengths. We find that the effect of the domain is the most important factor affecting the results for the given data domains and sizes. We compare our results with the only existing MT system for Assamese (Bing Translator) and also with pairs involving Hindi.


2021 ◽  
Vol 14 (2) ◽  
pp. 494-508
Author(s):  
Francina Sole-Mauri ◽  
Pilar Sánchez-Gijón ◽  
Antoni Oliver

This article presents Cadlaws, a new English–French corpus built from Canadian legal documents, and describes the corpus construction process and preliminary statistics obtained from it. The corpus contains over 16 million words in each language and includes unique features since it is composed of documents that are legally equivalent in both languages but not the result of a translation. The corpus is built upon enactments co-drafted by two jurists to ensure legal equality of each version and to re­flect the concepts, terms and institutions of two legal traditions. In this article the corpus definition as a parallel corpus instead of a comparable one is also discussed. Cadlaws has been pre-processed for machine translation and baseline Bilingual Evaluation Understudy (bleu), a score for comparing a candidate translation of text to a gold-standard translation of a neural machine translation system. To the best of our knowledge, this is the largest parallel corpus of texts which convey the same meaning in this language pair and is freely available for non-commercial use.


Author(s):  
Hao Zheng ◽  
Yong Cheng ◽  
Yang Liu

While neural machine translation (NMT) has made remarkable progress in translating a handful of high-resource language pairs recently, parallel corpora are not always available for many zero-resource language pairs. To deal with this problem, we propose an approach to zero-resource NMT via maximum expected likelihood estimation. The basic idea is to maximize the expectation with respect to a pivot-to-source translation model for the intended source-to-target model on a pivot-target parallel corpus. To approximate the expectation, we propose two methods to connect the pivot-to-source and source-to-target models. Experiments on two zero-resource language pairs show that the proposed approach yields substantial gains over baseline methods. We also observe that when trained jointly with the source-to-target model, the pivot-to-source translation model also obtains improvements over independent training.


Sign in / Sign up

Export Citation Format

Share Document