A Musculoskeletal Modeling Study of Lower-Limb Kinematics and Muscle Activities during Level Walking in Patients with Knee Osteoarthritis

Author(s):  
Wang Zesheng ◽  
W.M. Chen ◽  
Duo-Jin Wang
2017 ◽  
Vol 57 ◽  
pp. 236-240 ◽  
Author(s):  
Kenji Tanimoto ◽  
Makoto Takahashi ◽  
Kazuki Tokuda ◽  
Tomonori Sawada ◽  
Masaya Anan ◽  
...  

2015 ◽  
Vol 233 (8) ◽  
pp. 2477-2487 ◽  
Author(s):  
Erika E. Howe ◽  
Adam J. Toth ◽  
Lori Ann Vallis ◽  
Leah R. Bent

2016 ◽  
Vol 32 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Jonathan Sinclair ◽  
Jim Richards ◽  
James Selfe ◽  
James Fau-Goodwin ◽  
Hannah Shore

The current study aimed to comparatively examine the effects of minimalist, maximalist, and conventional footwear on the loads experienced by the patellofemoral joint during running. Twenty male participants ran over a force platform at 4.0 m×s–1. Lower limb kinematics were collected using an 8-camera motion capture system allowing patellofemoral kinetics to be quantified using a musculoskeletal modeling approach. Differences in patellofemoral kinetic parameters were examined using one-way repeatedmeasures ANOVA. The results showed the peak patellofemoral force and pressure were significantly larger in conventional (4.70 ± 0.91 BW, 13.34 ± 2.43 MPa) and maximalist (4.74 ± 0.88 BW, 13.59 ± 2.63 MPa) compared with minimalist footwear (3.87 ± 1.00 BW, 11.59 ± 2.63 MPa). It was also revealed that patellofemoral force per mile was significantly larger in conventional (246.81 ± 53.21 BW) and maximalist (251.94 ± 59.17 BW) as compared with minimalist (227.77 ± 58.60 BW) footwear. As excessive loading of the patellofemoral joint has been associated with the etiology of patellofemoral pain symptoms, the current investigation indicates that minimalist footwear may be able reduce runners’ susceptibility to patellofemoral disorders.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 190-201
Author(s):  
Pathmanathan Cinthuja ◽  
Graham Arnold ◽  
Rami J. Abboud ◽  
Weijie Wang

There is a lack of evidence about the ways in which balance ability influences the kinematic and kinetic parameters and muscle activities during gait among healthy individuals. The hypothesis is that balance ability would be associated with the lower limb kinematics, kinetics and muscle activities during gait. Twenty-nine healthy volunteers (Age 32.8 ± 9.1; 18 males and 11 females) performed a Star Excursion Balance test to measure their dynamic balance and walked for at least three trials in order to obtain a good quality of data. A Vicon® 3D motion capture system and AMTI® force plates were used for the collection of the movement data. The selected muscle activities were recorded using Delsys® Electromyography (EMG). The EMG activities were compared using the maximum values and root mean squared (RMS) values within the participants. The joint angle, moment, force and power were calculated using a Vicon Plug-in-Gait model. Descriptive analysis, correlation analysis and multivariate linear regression analysis were performed using SPSS version 23. In the muscle activities, positive linear correlations were found between the walking and balance test in all muscles, e.g., in the multifidus (RMS) (r = 0.800 p < 0.0001), vastus lateralis (RMS) (r = 0.639, p < 0.0001) and tibialis anterior (RMS) (r = 0.539, p < 0.0001). The regression analysis models showed that there was a strong association between balance ability (i.e., reaching distance) and the lower limb muscle activities (i.e., vastus medialis–RMS) (R = 0.885, p < 0.0001), and also between balance ability (i.e., reaching distance) and the lower limb kinematics and kinetics during gait (R = 0.906, p < 0.0001). In conclusion, the results showed that vastus medialis (RMS) muscle activity mainly contributes to balance ability, and that balance ability influences the lower limb kinetics and kinematics during gait.


2021 ◽  
pp. 1-9
Author(s):  
James R. Forsyth ◽  
Christopher J. Richards ◽  
Ming-Chang Tsai ◽  
John W. Whitting ◽  
Diane L. Riddiford-Harland ◽  
...  

2012 ◽  
Vol 15 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Mark G.L. Sayers ◽  
Amanda L. Tweddle ◽  
Joshua Every ◽  
Aaron Wiegand

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250965
Author(s):  
José Roberto de Souza Júnior ◽  
Pedro Henrique Reis Rabelo ◽  
Thiago Vilela Lemos ◽  
Jean-Francois Esculier ◽  
João Pedro da Silva Carto ◽  
...  

Patellofemoral pain (PFP) is one of the most prevalent injuries in runners. Unfortunately, a substantial part of injured athletes do not recover fully from PFP in the long-term. Although previous studies have shown positive effects of gait retraining in this condition, retraining protocols often lack clinical applicability because they are time-consuming, costly for patients and require a treadmill. The primary objective of this study will be to compare the effects of two different two-week partially supervised gait retraining programs, with a control intervention; on pain, function and lower limb kinematics of runners with PFP. It will be a single-blind randomized clinical trial with six-month follow-up. The study will be composed of three groups: a group focusing on impact (group A), a group focusing on cadence (group B), and a control group that will not perform any intervention (group C). The primary outcome measure will be pain assessed using the Visual Analog Pain scale during running. Secondary outcomes will include pain during daily activities (usual), symptoms assessed using the Patellofemoral Disorders Scale and lower limb running kinematics in the frontal (contralateral pelvic drop; hip adduction) and sagittal planes (foot inclination; tibia inclination; ankle dorsiflexion; knee flexion) assessed using the MyoResearch 3.14—MyoVideo (Noraxon U.S.A. Inc.). The study outcomes will be evaluated before (t0), immediately after (t2), and six months (t24) after starting the protocol. Our hypothesis is that both partially supervised gait retraining programs will be more effective in reducing pain, improving symptoms, and modifying lower limb kinematics during running compared with the control group, and that the positive effects from these programs will persist for six months. Also, we believe that one gait retraining group will not be superior to the other. Results from this study will help improve care in runners with PFP, while maximizing clinical applicability as well as time and cost-effectiveness.


Sign in / Sign up

Export Citation Format

Share Document