Spur Gear Design With an S-shaped Transition Curve Application Using MATHEMATICA and CAD Tools

Author(s):  
Saifudin Hafiz Yahaya ◽  
Mohd Shukor Salleh ◽  
Jamaludin Md. Ali
Author(s):  
Fatih Güven

Gears are commonly used in transmission systems to adjust velocity and torque. An integral gear or an interference fit could be used in a gearbox. Integral gears are mostly preferred as driving gear for a compact design to reduce the weight of the system. Interference fit makes the replacement of damaged gear possible and re-use of the shaft compared to the integral shaft. However, internal pressure occurs between mating surfaces of the components mated. This internal pressure affects the stress distribution at the root and bottom land of the gear. In this case, gear parameters should be re-considered to assure gear life while reducing the size of the gear. In this study, interference fitted gear-shaft assembly was examined numerically. The effects of rim thickness, profile shifting, module and fit tolerance on bending stress occurring at the root of the gear were investigated to optimize gear design parameters. Finite element models were in good agreement with analytical solutions. Results showed that the rim thickness of the gear is the main parameter in terms of tangential stress occurring at the bottom land of the gear. Positive profile shifting reduces the tangential stress while the pitch diameter of the gear remains constant. Also, lower tolerance class could be selected to moderate stress for small rim thickness.


2021 ◽  
Vol 63 (3) ◽  
pp. 266-271
Author(s):  
Hammoudi Abderazek ◽  
Ferhat Hamza ◽  
Ali Riza Yildiz ◽  
Sadiq M. Sait

Abstract In this study, two recent algorithms, the whale optimization algorithm and moth-flame optimization, are used to optimize spur gear design. The objective function is the minimization of the total weight of the spur gear pair. Moreover, the optimization problem is subjected to constraints on the main kinematic and geometric conditions as well as to the resistance of the material of the gear system. The comparison between moth-flame optimization (MFO), the whale optimization algorithm (WOA), and previous studies indicate that the final results obtained from both algorithms lead to a reduction in gear weight by 1.05 %. MFO and the WOA are compared with four additional swarm algorithms. The experimental results indicate that the algorithms introduced here, in particular MFO, outperform the four other methods when compared in terms of solution quality, robustness, and high success rate.


Author(s):  
K.-C. Lin ◽  
G. E. Johnson

Abstract An expert system is developed for optimal spur gear design. Design automation is accomplished by dividing the design variables into different categories, i.e. geometric design variables and non-geometric design variables. The geometric variables are further divided into terms that are related to the gear mathematical model and terms that are determined according to the designer’s experience. By properly developing the mathematical model, numerical optimisation can be used to seek the best solution for a given set of geometric constraints. The process of determining the non-geometric design variables is automated by using symbolic computation. This gear design expert system is built according to the AGMA standards and a survey of gear design experts. The recommendations of gear designers and the information provided by AGMA standards are integrated into knowledge bases and data bases. By providing fast information retrieval and design guidelines, this expert system greatly streamlines the spur gear design process and makes it possible for a novice designer to achieve a reliable design in a short period of time.


Author(s):  
Ping-Hsun Lin ◽  
Hsiang Hsi Lin ◽  
Fred B. Oswald ◽  
Dennis P. Townsend

Abstract This paper presents procedures for designing compact spur gear sets with the objective of minimizing the gear size. The allowable tooth stress and dynamic response are incorporated in the process to obtain a feasible design region. Various dynamic rating factors were investigated and evaluated. The constraints of contact stress limits and involute interference combined with the tooth bending strength provide the main criteria for this investigation. A three-dimensional design space involving the gear size, diametral pitch, and operating speed was developed to illustrate the optimal design of spur gear pairs. The study performed here indicates that as gears operate over a range of speeds, variations in the dynamic response change the required gear size in a trend that parallels the dynamic factor. The dynamic factors are strongly affected by the system natural frequencies. The peak values of the dynamic factor within the operating speed range significantly influence the optimal gear designs. The refined dynamic factor introduced in this study yields more compact designs than AGMA dynamic factors.


1966 ◽  
Author(s):  
Wayne L. McIntire ◽  
Richard C. Malott

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohe Deng ◽  
Lin Hua ◽  
Xinghui Han

A design method for the geometric shape and modification of asymmetric spur gear was proposed, in which the geometric shape and modification of the gear can be obtained directly according to the rack-cutter profile. In the geometric design process of the gear, a rack-cutter with different pressure angles and fillet radius in the driving side and coast side was selected, and the generated asymmetric spur gear profiles also had different pressure angles and fillets accordingly. In the modification design of the gear, the pressure angle modification of rack-cutter was conducted firstly and then the corresponding modified involute gear profile was obtained. The geometric model of spur gears was developed using computer-aided design, and the meshing process was analyzed using finite element simulation method. Furthermore, the transmission error and load sharing ratio of unmodified and modified asymmetric spur gears were investigated. Research results showed that the proposed gear design method was feasible and desired spur gear can be obtained through one time rapid machining by the method. Asymmetric spur gear with better transmission characteristic can be obtained via involute modification.


1969 ◽  
Author(s):  
D. Dana White ◽  
James L. Henderson
Keyword(s):  

2018 ◽  
Vol 237 ◽  
pp. 03010 ◽  
Author(s):  
Priyakant Vaghela ◽  
Jagdish Prajapati

This research describes simple and innovative approach to reduce bending stress at tooth root of asymmetric spur gear tooth which is desire for improve high load carrying capacity. In gear design at root of tooth circular-filleted is widely used. Blending of the involute profile of tooth and circular fillet creates discontinuity at root of tooth causes stress concentration occurs. In order to minimize stress concentration, geometric continuity of order 2 at the blending of gear tooth plays very important role. Bezier curve is used with geometric continuity of order 2 at tooth root of asymmetric spur gear to reduce bending stress.


1991 ◽  
Author(s):  
M. SAVAGE ◽  
B. MACKULIN ◽  
H. COE ◽  
J. COY
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document