scholarly journals Development of an Active Fixture for Ultrasonically Assisted Micro Electro-Discharge Machining

Author(s):  
Md Shohag Mollik ◽  
Wazed Ibne Noor ◽  
Tanveer Saleh ◽  
Mohammed Gamal Abdulhameed Bazarah
2019 ◽  
Vol 18 ◽  
pp. 3122-3127 ◽  
Author(s):  
Renu K. Shastri ◽  
Chinmaya P. Mohanty ◽  
Prashant S. Jadhav

2010 ◽  
Vol 44-47 ◽  
pp. 1066-1069
Author(s):  
Li Li ◽  
Li Ling Qi ◽  
Zong Wei Niu

This paper presents an experimental investigation of the machining characteristics of sintered NdFeB permanent magnet using a combination process of electro-discharge machining (EDM) with ultrasonic machining (USM). Concentration of abrasive in the dielectric fluid is changed to explore its effect on the material removal rate (MRR). MRR of EDM /USM, conventional EDM are compared, machined surface characteristics are also compared between them. It is concluded that the combination EDM/USM process can increase the MRR and decrease the thickness of the recast layer. In the combination process, an appropriate abrasive concentration can improve its machining efficiency.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 571
Author(s):  
Timur Rizovich Ablyaz ◽  
Evgeny Sergeevich Shlykov ◽  
Karim Ravilevich Muratov ◽  
Sarabjeet Singh Sidhu

This study presents the analysis of wire-cut electro-discharge machining (WIRE-EDM) of polymer composite material (PCM). The conductivity of the workpiece is improved by using 1 mm thick titanium plates (layers) sandwiched on the PCM. Input process parameters selected are variable voltage (50–100 V), pulse duration (5–15 μs), and pause time (10–50 μs), while the cut-width (kerf) is recognized as an output parameter. Experimentation was carried out by following the central composition design (CCD) design matrix. Analysis of variance was applied to investigate the effect of process parameters on the cut-width of the PCM parts and develop the theoretical model. The results demonstrated that voltage and pulse duration significantly affect the cut-width accuracy of PCM. Furthermore, the theoretical model of machining is developed and illustrates the efficacy within the acceptable range. Finally, it is concluded that the model is an excellent way to successfully estimate the correction factors to machine complex-shaped PCM parts.


Author(s):  
J-B Li ◽  
K Jiang ◽  
G J Davies

A novel die-sinking micro-electro discharge machining (EDM) process is presented for volume fabrication of metallic microcomponents. In the process, a high-precision silicon electrode is fabricated using deep reactive ion etching (DRIE) process of microelectromechanical systems (MEMS) technology and then coated with a thin layer of copper to increase the conductivity. The metalized Si electrode is used in the EDM process to manufacture metallic microcomponents by imprinting the electrode onto a flat metallic surface. The two main advantages of this process are that it enables the fabrication of metallic microdevices and reduces manufacturing cost and time. The development of the new EDM process is described. A silicon component was produced using the Surface Technology Systems plasma etcher and the DRIE process. Such components can be manufactured with a precision in nanometres. The minimum feature of the component is 50 μm. In the experiments, the Si component was coated with copper and then used as the electrode on an EDM machine of 1 μm resolution. In the manufacturing process, 130 V and 0.2 A currents were used for a period of 5 min. The SEM images of the resulting device show clear etched areas, and the electric discharge wave chart indicates a good fabrication condition. The experimental results have been analysed and the new micro-EDM process is found to be able to fabricate 25 μm features.


2007 ◽  
Vol 24-25 ◽  
pp. 377-382
Author(s):  
Rong Fa Chen ◽  
Dun Wen Zuo ◽  
Yu Li Sun ◽  
Wen Zhuang Lu ◽  
D.S. Li ◽  
...  

Although research on various diamond polishing techniques has been carried for years, some issues still need to be examined in order to facilitate application on large areas in a cost-efficient manner. A compositive technique for machining efficiently thick diamond films prepared by DC plasma arc jet is reported in the present paper. A two-stage polishing was applied on thick polycrystalline diamond films, by employing first electro-discharge machining (EDM) for rough polishing and subsequently mechanical polishing for finishing operations. Experimental results obtained clearly indicate the applicability of the proposed two-stage technique for fabricating transparent diamond films that can be used for the production of X-ray windows. Appropriate etching with EDM is an effective pretreatment method for enhancing the efficiency of rough polishing process in mechanical polishing of thick diamond film. The machined surfaces of diamond films are studied by Scanning Electron Microscope (SEM) and Raman Scattering Spectroscopy (Raman).


Sign in / Sign up

Export Citation Format

Share Document