Investigation on the Machining of Thick Diamond Films by EDM Together with Mechanical Polishing

2007 ◽  
Vol 24-25 ◽  
pp. 377-382
Author(s):  
Rong Fa Chen ◽  
Dun Wen Zuo ◽  
Yu Li Sun ◽  
Wen Zhuang Lu ◽  
D.S. Li ◽  
...  

Although research on various diamond polishing techniques has been carried for years, some issues still need to be examined in order to facilitate application on large areas in a cost-efficient manner. A compositive technique for machining efficiently thick diamond films prepared by DC plasma arc jet is reported in the present paper. A two-stage polishing was applied on thick polycrystalline diamond films, by employing first electro-discharge machining (EDM) for rough polishing and subsequently mechanical polishing for finishing operations. Experimental results obtained clearly indicate the applicability of the proposed two-stage technique for fabricating transparent diamond films that can be used for the production of X-ray windows. Appropriate etching with EDM is an effective pretreatment method for enhancing the efficiency of rough polishing process in mechanical polishing of thick diamond film. The machined surfaces of diamond films are studied by Scanning Electron Microscope (SEM) and Raman Scattering Spectroscopy (Raman).

2009 ◽  
Vol 69-70 ◽  
pp. 192-197
Author(s):  
Li Zhang ◽  
Dong Hui Wen ◽  
Shi Ming Ji ◽  
Qiao Ling Yuan ◽  
Zhen Hao Xu

The rough surfaces and non-uniform thicknesses of chemically vapor-deposited (CVD) diamond films and substrates affect their industrial application. In recent years, many polishing and planarization methods have been reported, but each method has its relative merits. This paper reviews the necessity for processing of the CVD diamond films first. Then the processing mechanism of micro-cracking and the characteristics of mechanical polishing of diamond films are discussed. The remove form of the material and surface characteristics are compared by three mechanical polishing method, including free abrasive polishing, fixation abrasive polishing and membrane on the membrane polishing method. No matter what form of mechanical polishing process is adopted, because of its inherent characteristics and the principles of processing, mechanical polishing CVD diamond films can only be as polish processing to remove large residual. The macro-surface roughness of processing is about the 2μm. The micro-rough surface roughness is for the 40nm or so. The material removal rate is 10nm/h.


2011 ◽  
Vol 55-57 ◽  
pp. 832-837
Author(s):  
Ming Yi Tsai ◽  
W.K. Chen ◽  
Hung Jung Tsai

A pad conditioner or diamond disk is needed to regenerate the asperity structure of the pad and recover its designated role in the chemical mechanical polishing process. In this paper, the effect of dressing load and speed on removal rate of oxidized wafers were investigated using a polycrystalline diamond disk and brazed diamond disk. It was found that polycrystalline diamond disk enable the manufacturer to tightly control diamond leveling and the cutter’s shape by comparison with a brazed diamond disk that contains discrete diamond grits of random orientation. Experimental results revealed that for polycrystalline diamond disk, the removal rate of oxidized wafer displayed an almost unchanged curve when the load was less than 4kg, but the removal rate of oxidized wafer for brazed diamond disk initially increased with the dressing load, reaching a maximum value at a dressing load of approximately 4 kg. Then, it decreased slowly with further increases of the dressing load. The removal rate of oxidized wafer remains unchanged with dressing speed.


Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


CIRP Annals ◽  
1990 ◽  
Vol 39 (1) ◽  
pp. 585-588 ◽  
Author(s):  
R. Komanduri ◽  
L.L. Fehrenbacher ◽  
L.M. Hanssen ◽  
A. Morrish ◽  
K.A. Snail ◽  
...  

1994 ◽  
Vol 3 (4-6) ◽  
pp. 663-671 ◽  
Author(s):  
J. Ullmann ◽  
A. Weber ◽  
B. Mainz ◽  
J. Stiegler ◽  
T. Schuhrke

Sign in / Sign up

Export Citation Format

Share Document