Langevin Dynamics Modeling of Gas-Phase Ion Recombination with Dilute Ion Concentration

Author(s):  
Li Li ◽  
Zhibo Liu ◽  
Mrittika Roy ◽  
Ranganathan Gopalakrishnan
2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


Author(s):  
Ying Zhao ◽  
Emma Rostal Sørensen ◽  
Thomas Toft Lindkvist ◽  
Christina Kjær ◽  
Mogens Brøndsted Nielsen ◽  
...  
Keyword(s):  

1995 ◽  
Vol 73 (12) ◽  
pp. 2263-2271 ◽  
Author(s):  
Christine C.Y. Chow ◽  
John M. Goodings

A pair of laminar, premixed, CH4–O2 flames above 2000 K at atmospheric pressure, one fuel-rich (FR) and the other fuel-lean (FL), were doped with ~10−6 mol fraction of the second-row transition metals Y, Zr, Nb, and Mo. Since these hydrocarbon flames contain natural ionization, metallic ions were produced in the flames by the chemical ionization (CI) of metallic neutral species, primarily by H3O+ and OH− as CI sources. Both positive and negative ions of the metals were observed as profiles of ion concentration versus distance along the flame axis by sampling the flames through a nozzle into a mass spectrometer. For yttrium, the observed ions include the YO+•nH2O (n = 0–3) series, and Y(OH)4−. With zirconium, they include the ZrO(OH)+•nH2O (n = 0–2) series, and ZrO(OH)3−. Those observed with niobium were the cations Nb(OH)3+ and Nb(OH)4+, and the single anion NbO2(OH)2−. For molybdenum, they include the cations MoO(OH)2+ and MoO(OH)3+, and the anions MoO3− and MoO3(OH)−. Not every ion was observed in each flame; the FL flame tended to favour the ions in higher oxidation states. Also, flame ions in higher oxidation states were emphasized for these second-row transition metals compared with their first-row counterparts. Some ions written as members of hydrate series may have structures different from those of simple hydrates; e.g., YO+•H2O = Y(OH)2+ and ZrO(OH)+•H2O = Zr(OH)3+, etc. The ion chemistry for the production of these ions by CI in flames is discussed in detail. Keywords: transition metals, ions, flame, gas phase, negative ions.


Sign in / Sign up

Export Citation Format

Share Document