AI Detect: A Machine Learning Based Approach for Fault Identification in Gear Bearing System using Low-Frequency Data

Author(s):  
Muhammad Usman ◽  
Shahzad Anwar ◽  
Muhammad Akmal ◽  
Abdul Hafeez
Author(s):  
Bryan J. Stringham ◽  
Daniel O. Smith ◽  
Christopher A. Mattson ◽  
Eric C. Dahlin

Abstract Evaluating the social impact indicators of engineered products is crucial to better understanding how products affect individuals’ lives and discover how to design for positive social impact. Most existing methods for evaluating social impact indicators require direct human interaction with users of a product, such as one-on-one interviews. These interactions produce high-fidelity data that are rich in information but provide only a single snapshot in time of the product’s impacts and are less frequently collected due to the significant human resources and cost associated with obtaining them. A framework is proposed that describes how low-fidelity data passively obtained using remote sensors, satellites, and digital technology can be collected and correlated with high-fidelity, low-frequency data using machine learning. Using this framework provides an inexpensive way to continuously monitor the social impact indicators of products by augmenting high-fidelity, low-frequency data with low-fidelity, continuously-collected data using machine learning. We illustrate an application of this framework by demonstrating how it can be used to examine the gender-related social impact indicators of water pumps in Uganda. The provided example uses a deep learning model to correlate pump handle movement (measured via an integrated motion unit) with user type (man, woman, or child) of 1,200 hand pump users.


2021 ◽  
Vol 282 ◽  
pp. 116146
Author(s):  
Štefan Lyócsa ◽  
Neda Todorova ◽  
Tomáš Výrost

Geophysics ◽  
2021 ◽  
pp. 1-54
Author(s):  
Milad Bader ◽  
Robert G. Clapp ◽  
Biondo Biondi

Low-frequency data below 5 Hz are essential to the convergence of full-waveform inversion towards a useful solution. They help build the velocity model low wavenumbers and reduce the risk of cycle-skipping. In marine environments, low-frequency data are characterized by a low signal-to-noise ratio and can lead to erroneous models when inverted, especially if the noise contains coherent components. Often field data are high-pass filtered before any processing step, sacrificing weak but essential signal for full-waveform inversion. We propose to denoise the low-frequency data using prediction-error filters that we estimate from a high-frequency component with a high signal-to-noise ratio. The constructed filter captures the multi-dimensional spectrum of the high-frequency signal. We expand the filter's axes in the time-space domain to compress its spectrum towards the low frequencies and wavenumbers. The expanded filter becomes a predictor of the target low-frequency signal, and we incorporate it in a minimization scheme to attenuate noise. To account for data non-stationarity while retaining the simplicity of stationary filters, we divide the data into non-overlapping patches and linearly interpolate stationary filters at each data sample. We apply our method to synthetic stationary and non-stationary data, and we show it improves the full-waveform inversion results initialized at 2.5 Hz using the Marmousi model. We also demonstrate that the denoising attenuates non-stationary shear energy recorded by the vertical component of ocean-bottom nodes.


2021 ◽  
Vol 40 (10) ◽  
pp. 759-767
Author(s):  
Rolf H. Baardman ◽  
Rob F. Hegge

Machine learning (ML) has proven its value in the seismic industry with successful implementations in areas of seismic interpretation such as fault and salt dome detection and velocity picking. The field of seismic processing research also is shifting toward ML applications in areas such as tomography, demultiple, and interpolation. Here, a supervised ML deblending algorithm is illustrated on a dispersed source array (DSA) data example in which both high- and low-frequency vibrators were deployed simultaneously. Training data pairs of blended and corresponding unblended data were constructed from conventional (unblended) data from another survey. From this training data, the method can automatically learn a deblending operator that is used to deblend for both the low- and the high-frequency vibrators of the DSA data. The results obtained on the DSA data are encouraging and show that the ML deblending method can offer a good performing, less user-intensive alternative to existing deblending methods.


2004 ◽  
Vol 32 (5) ◽  
pp. 2223-2253 ◽  
Author(s):  
Markus Rei� ◽  
Marc Hoffmann ◽  
Emmanuel Gobet

Author(s):  
Denys Pestana-Viana ◽  
Ricardo H. R. Gutiérrez ◽  
Amaro A. de Lima ◽  
Fabrício L. e Silva ◽  
Luiz Vaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document