Fault diagnosis of induction motor using decision tree with an optimal feature selection

Author(s):  
Ngoc-Tu Nguyen ◽  
Jeong-Min Kwon ◽  
Hong-Hee Lee
Author(s):  
N-T Nguyen ◽  
H-H Lee

In this study, features are extracted from time vibration signals for the purpose of diagnosing motor faults. On the basis of the specific distance criterion, a simple genetic algorithm (GA) is employed to evaluate and select the optimized features for induction motor fault classification. The selected features are applied to the decision tree and the k-nearest neighbour (k-NN) algorithm in order to show the efficiency of the proposed feature selection method. The diagnostic results show that the optimal feature selection is useful to improve the fault diagnosis performance.


2013 ◽  
Vol 46 (32) ◽  
pp. 809-814 ◽  
Author(s):  
Mahak Mittal ◽  
Mani Bhushan ◽  
Shubhangi Patil ◽  
Sushil Chaudhari

Author(s):  
Yu Zhang ◽  
Miguel Martínez-García ◽  
Anthony Latimer

This paper studies the behavior of Industrial Gas Turbines (IGTs) based on time-series measurements with low sampling rates. The aim is to find the most suitable set of statistical/time-domain features derived from the measurements, which can represent the characteristic behavior of the IGTs, or alternatively, which can discriminate between different engines or different states of an engine. For this end, a scheme of optimal feature selection process is proposed in the paper. For cross-fleet analysis, signals from a group of inter-duct thermocouples on IGT engines are studied. A feature matrix is formulated at each sliding time step, by calculating the statistical features of the sensor group, after the time-domain features of the individual sensor measurements are calculated. Feature matrix values from different engines are then clustered, and a modified Davies–Bouldin index is introduced to measure the quality of the clusters. Finally, grid search is run to find the optimal set of the features, which form the clusters with the most similarity, or otherwise, the most discrepancy across the IGT engines. The window size effect is also investigated. To demonstrate that the optimal feature selection process is also useful for fault diagnosis of IGTs, the proposed scheme is then applied on a group of different measurements on an IGT, i.e. from burner tip thermocouples, in a fault diagnostic scenario, which is subsequently validated using a k-nearest neighbor classification algorithm. The case studies have demonstrated that, ultimately, the developed techniques can be broadly applied to other groups of measurements for both cross-fleet analysis and fault diagnosis of IGTs.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


2021 ◽  
pp. 1-34
Author(s):  
Kadam Vikas Samarthrao ◽  
Vandana M. Rohokale

Email has sustained to be an essential part of our lives and as a means for better communication on the internet. The challenge pertains to the spam emails residing a large amount of space and bandwidth. The defect of state-of-the-art spam filtering methods like misclassification of genuine emails as spam (false positives) is the rising challenge to the internet world. Depending on the classification techniques, literature provides various algorithms for the classification of email spam. This paper tactics to develop a novel spam detection model for improved cybersecurity. The proposed model involves several phases like dataset acquisition, feature extraction, optimal feature selection, and detection. Initially, the benchmark dataset of email is collected that involves both text and image datasets. Next, the feature extraction is performed using two sets of features like text features and visual features. In the text features, Term Frequency-Inverse Document Frequency (TF-IDF) is extracted. For the visual features, color correlogram and Gray-Level Co-occurrence Matrix (GLCM) are determined. Since the length of the extracted feature vector seems to the long, the optimal feature selection process is done. The optimal feature selection is performed by a new meta-heuristic algorithm called Fitness Oriented Levy Improvement-based Dragonfly Algorithm (FLI-DA). Once the optimal features are selected, the detection is performed by the hybrid learning technique that is composed of two deep learning approaches named Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN). For improving the performance of existing deep learning approaches, the number of hidden neurons of RNN and CNN is optimized by the same FLI-DA. Finally, the optimized hybrid learning technique having CNN and RNN classifies the data into spam and ham. The experimental outcomes show the ability of the proposed method to perform the spam email classification based on improved deep learning.


Sign in / Sign up

Export Citation Format

Share Document