Design and implementation of high switching frequency LLC resonant converter for high power density

Author(s):  
Hwa-Pyeong Park ◽  
Hyun-Jun Choi ◽  
Jee-Hoon Jung
2021 ◽  
Vol 11 (23) ◽  
pp. 11350
Author(s):  
Seyed Abolfazl Mortazavizadeh ◽  
Simone Palazzo ◽  
Arturo Amendola ◽  
Enzo De Santis ◽  
Dario Di Ruzza ◽  
...  

Soft switching for both primary and secondary side devices is available by using LLC converters. This resonant converter is an ideal candidate for today’s high frequency, high efficiency, and high power density applications like adapters, Uninterrupted Power Supplies (UPS), Solid State Transformers (SST), electric vehicle battery chargers, renewable energy systems, servers, and telecom systems. Using Gallium-Nitride (GaN)-based power switches in this converter merits more and more switching frequency, power density, and efficiency. Therefore, the present paper focused on GaN-based LLC resonant converters. The converter structure, operation regions, design steps, and drive system are described precisely. Then its losses are discussed, and the magnets and inductance characteristics are investigated. After that, various interleaved topologies, as a solution to improve power density and decrease current ripples, have been discussed. Also, some challenges and concerns related to GaN-based LLC converters have been reviewed. Commercially available power transistors based on various technologies, i.e., GaN HEMT, Silicon (Si) MOSFET, and Silicon Carbide (SiC) have been compared. Finally, the LLC resonant converter has been simulated by taking advantage of LTspice and GaN HEMT merits, as compared with Si MOSFETs.


2019 ◽  
Vol 25 (3) ◽  
pp. 4-9
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Andrej Kanovsky

Dual interleaved LLC resonant converter with half bridge topology of main circuit characterized by high switching frequency (500 kHz), high power density (60 W/inch3) and high efficiency (above 96 %) over entire operational range (20 %–100 %) is described. Focus was given on the practical design of power converter, which will be able to fulfil requirements on wide load range operation characterized by upcoming normative. Since proposed topology is based on dual interleaved LLC converter, the resonant component´s critical tolerance was also investigated to secure reliable and optimal operational point. Consequently, proposals for elimination of intolerance negative impact are also described. The results of theoretical analysis were verified directly through experimental measurements. Experimental results are finally compared with upcoming industrial standard 80 Plus Titanium.


2020 ◽  
Vol 67 (2) ◽  
pp. 1580-1591 ◽  
Author(s):  
Yu-Chen Liu ◽  
Kai-De Chen ◽  
Chen Chen ◽  
Yong-Long Syu ◽  
Guan-Wei Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document