An analytical approach for optimal sizing and placement of distributed generation in radial distribution systems

Author(s):  
Prem Prakash ◽  
Dheeraj K. Khatod
Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1728 ◽  
Author(s):  
José Adriano da Costa ◽  
David Alves Castelo Branco ◽  
Max Chianca Pimentel Filho ◽  
Manoel Firmino de Medeiros Júnior ◽  
Neilton Fidelis da Silva

The integration of renewable distributed generation into distribution systems has been studied comprehensively, due to the potential benefits, such as the reduction of energy losses and mitigation of the environmental impacts resulting from power generation. The problem of minimizing energy losses in distribution systems and the methods used for optimal integration of the renewable distributed generation have been the subject of recent studies. The present study proposes an analytical method which addresses the problem of sizing the nominal power of photovoltaic generation, connected to the nodes of a radial distribution feeder. The goal of this method is to minimize the total energy losses during the daily insolation period, with an optimization constraint consisting in the energy flow in the slack bus, conditioned to the energetic independence of the feeder. The sizing is achieved from the photovoltaic generation capacity and load factors, calculated in time intervals defined in the typical production curve of a photovoltaic unit connected to the distribution system. The analytical method has its foundations on Lagrange multipliers and relies on the Gauss-Jacobi method to make the resulting equation system solution feasible. This optimization method was evaluated on the IEEE 37-bus test system, from which the scenarios of generation integration were considered. The obtained results display the optimal sizing as well as the energy losses related to additional power and the location of the photovoltaic generation in distributed generation integration scenarios.


2010 ◽  
Vol 38 (3) ◽  
pp. 260-274 ◽  
Author(s):  
T. N. Shukla ◽  
S. P. Singh ◽  
V. Srinivasarao ◽  
K. B. Naik

2021 ◽  
Vol 13 (6) ◽  
pp. 3308
Author(s):  
Chandrasekaran Venkatesan ◽  
Raju Kannadasan ◽  
Mohammed H. Alsharif ◽  
Mun-Kyeom Kim ◽  
Jamel Nebhen

Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 60-67 ◽  
Author(s):  
John Edwin Candelo-Becerra ◽  
Helman Hernández-Riaño

<p>Distributed generation (DG) is an important issue for distribution networks due to the improvement in power losses, but the location and size of generators could be a difficult task for exact techniques. The metaheuristic techniques have become a better option to determine good solutions and in this paper the application of a bat-inspired algorithm (BA) to a problem of location and size of distributed generation in radial distribution systems is presented. A comparison between particle swarm optimization (PSO) and BA was made in the 33-node and 69-node test feeders, using as scenarios the change in active and reactive power, and the number of generators. PSO and BA found good results for small number and capacities of generators, but BA obtained better results for difficult problems and converged faster for all scenarios. The maximum active power injections to reduce power losses in the distribution networks were found for the five scenarios.</p>


2019 ◽  
Vol 13 (1) ◽  
pp. 17-23
Author(s):  
Helbert Eduardo Espitia Cuchango ◽  
Iván Machón González ◽  
Hilario López García ◽  
Domingo Guzmán Díaz González

Energy distribution systems present alterations in the voltage profile in their nodes when distributed generation elements are installed. As a consequence, tension can be risen in a level beyond the admissible. This paper presents the optimization to three fuzzy controllers located in a distribution network with radial topology. The optimization of each controller is performed using the maximum descent algorithm, which is separately carried out; thus, having a distributed approach. The interaction between generators is considered to perform this process; the results show that the adjustment of the controllers is achieved


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Tung Tran The ◽  
Sy Nguyen Quoc ◽  
Dieu Vo Ngoc

This paper proposes the Symbiotic Organism Search (SOS) algorithm to find the optimal network configuration and the placement of distributed generation (DG) units that minimize the real power loss in radial distribution networks. The proposed algorithm simulates symbiotic relationships such as mutualism, commensalism, and parasitism for solving the optimization problems. In the optimization process, the reconfiguration problem produces a large number of infeasible network configurations. To reduce these infeasible individuals and ensure the radial topology of the network, the graph theory was applied during the power flow. The implementation of the proposed SOS algorithm was carried out on 33-bus, 69-bus, 84-bus, and 119-bus distribution networks considering seven different scenarios. Simulation results and performance comparison with other optimization methods showed that the SOS-based approach was very effective in solving the network reconfiguration and DG placement problems, especially for complex and large-scale distribution networks.


Sign in / Sign up

Export Citation Format

Share Document