Impact of redox flow battery and capacitive energy storage devices in performance enhancement of restructured AGC of a CCGT incorporated hydro-thermal system

Author(s):  
Debdeep Saha ◽  
L. C. Saikia ◽  
More Raju ◽  
Rumi Rajbongshi
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

AbstractMembranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm−2, along with an energy efficiency of 82.36% for 400 cycles. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


2020 ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

Abstract Membranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm− 2, along with an energy efficiency of 82.36% for 400 cycles, which is among the highest efficiencies for zinc-based flow batteries. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


2013 ◽  
Vol 78 (12) ◽  
pp. 2141-2164 ◽  
Author(s):  
Vladimir Panic ◽  
Aleksandar Dekanski ◽  
Branislav Nikolic

Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS) is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called ?resistor/capacitor (RC) ladder?. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001380-001406
Author(s):  
Aubrey N. Beal ◽  
John Tatarchuk ◽  
Colin Stevens ◽  
Thomas Baginski ◽  
Michael Hamilton ◽  
...  

The need for integrated passive components which meet the stringent power system requirements imposed by increased data rates, signal path density and challenging power distribution network topologies in integrated systems yield diverse motivations for high density, miniaturized capacitors capable of quickly sourcing large quantities of current. These diverse motivations have led to the realization of high density capacitor structures through the means of several technologies. These structures have been evaluated as high-speed, energy storage devices and their respective fabrication technologies have been closely compared for matching integrated circuit speed and density increase, chip current requirements, low resistance, low leakage current, high capacitance and compatibility with relatively high frequencies of operation (~1GHz). These technologies include devices that utilize pn junctions, Schottky barriers, optimized surface area techniques and the utilization of high dielectric constant (high-K) materials, such as hafnium oxide, as a dielectric layer through the means of atomic layer deposition (ALD). The resulting devices were micro-machined, large surface area, thin, high-density capacitor technologies optimized as embedded passive devices for thin silicon interposers. This work outlines the design, fabrication, simulation and testing of each device revision using standard silicon microfabrication processes and silicon interposer technologies. Consequently, capacitive storage devices were micro-machined with geometries which maximize surface area and exhibit the capability of sourcing 100A of current with a response time greater than 100 A/nsec through the use of thin layered, ALD high-K materials. The simulation and testing of these devices show general agreement when subjected to a standard ring-down procedure. This paper provides descriptions and design challenges encountered during fabrication, testing and integration of these passive devices. In addition, potential device integration and implementation strategies for use in silicon interposers are also provided. The modification and revision of several device generations is documented showing increased device capacitance density, maximized current capabilities and minimized effects of series inductance and resistance. The resulting structures are thin, capacitive devices that may be micro-machined using industry standard Si MEMS processes and are compatible with Si interposer 3D technologies. The subsequent design processes allow integrated passive components to be attached beneath chips in order to maximize system area and minimize the chip real estate required for capacitive energy storage devices.


2015 ◽  
Vol 127 (23) ◽  
pp. 6904-6907 ◽  
Author(s):  
Jiasheng Qian ◽  
Huanyu Jin ◽  
Bolei Chen ◽  
Mei Lin ◽  
Wei Lu ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (53) ◽  
pp. 3573-3578
Author(s):  
Jiasheng Qian ◽  
Shu Ping Lau ◽  
Jikang Yuan

ABSTRACTWe report a simple approach to fabricate high performance energy storage devices based on aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long term stability. Continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, we printed the MnO2 ink on commercially available A4 paper pre-treated by multi-walled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 90.8 mF/cm2. The electrode could maintain 98.7% capacitance retention for 1,000 cycles at 10 mV/s. The MnO2 ink could be a potential candidate for large-scale production of flexible and printable electronic devices for energy storage and conversion.


2012 ◽  
Vol 5 (11) ◽  
pp. 9363 ◽  
Author(s):  
Katsuhiko Naoi ◽  
Syuichi Ishimoto ◽  
Jun-ichi Miyamoto ◽  
Wako Naoi

Sign in / Sign up

Export Citation Format

Share Document