scholarly journals Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites

2013 ◽  
Vol 78 (12) ◽  
pp. 2141-2164 ◽  
Author(s):  
Vladimir Panic ◽  
Aleksandar Dekanski ◽  
Branislav Nikolic

Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS) is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called ?resistor/capacitor (RC) ladder?. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues.

2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001380-001406
Author(s):  
Aubrey N. Beal ◽  
John Tatarchuk ◽  
Colin Stevens ◽  
Thomas Baginski ◽  
Michael Hamilton ◽  
...  

The need for integrated passive components which meet the stringent power system requirements imposed by increased data rates, signal path density and challenging power distribution network topologies in integrated systems yield diverse motivations for high density, miniaturized capacitors capable of quickly sourcing large quantities of current. These diverse motivations have led to the realization of high density capacitor structures through the means of several technologies. These structures have been evaluated as high-speed, energy storage devices and their respective fabrication technologies have been closely compared for matching integrated circuit speed and density increase, chip current requirements, low resistance, low leakage current, high capacitance and compatibility with relatively high frequencies of operation (~1GHz). These technologies include devices that utilize pn junctions, Schottky barriers, optimized surface area techniques and the utilization of high dielectric constant (high-K) materials, such as hafnium oxide, as a dielectric layer through the means of atomic layer deposition (ALD). The resulting devices were micro-machined, large surface area, thin, high-density capacitor technologies optimized as embedded passive devices for thin silicon interposers. This work outlines the design, fabrication, simulation and testing of each device revision using standard silicon microfabrication processes and silicon interposer technologies. Consequently, capacitive storage devices were micro-machined with geometries which maximize surface area and exhibit the capability of sourcing 100A of current with a response time greater than 100 A/nsec through the use of thin layered, ALD high-K materials. The simulation and testing of these devices show general agreement when subjected to a standard ring-down procedure. This paper provides descriptions and design challenges encountered during fabrication, testing and integration of these passive devices. In addition, potential device integration and implementation strategies for use in silicon interposers are also provided. The modification and revision of several device generations is documented showing increased device capacitance density, maximized current capabilities and minimized effects of series inductance and resistance. The resulting structures are thin, capacitive devices that may be micro-machined using industry standard Si MEMS processes and are compatible with Si interposer 3D technologies. The subsequent design processes allow integrated passive components to be attached beneath chips in order to maximize system area and minimize the chip real estate required for capacitive energy storage devices.


2015 ◽  
Vol 127 (23) ◽  
pp. 6904-6907 ◽  
Author(s):  
Jiasheng Qian ◽  
Huanyu Jin ◽  
Bolei Chen ◽  
Mei Lin ◽  
Wei Lu ◽  
...  

In this study, graphene-molybdenum oxide composite materials were prepared via green hydrothermal synthesis method and evaluated as supercapacitor electrodes. The morphology and structure of the composite were examined by using Scanning Electron Microscopy (SEM), Raman spectroscopy. The electrochemical performances of the composite were evaluated by cyclic voltammetry (CV), galvanostatic chargedischarge (CD) method, and electrochemical impedance spectroscopy (EIS). The electrochemical results show that the composite electrodes possess improved specific capacitance of 122 F/g at a scan rate of 5 mV/s, which is about 22% higher that of pure graphene. Additionally, the composite electrodes exhibit good capacitive properties and a high specific energy with superior capacitive retention after 1000 cycles. In contrast to the previously reported systems that are usually complicated and costly, the present work potentially provides a readily scalable technological platform for economic mass production of energy storage devices.


2021 ◽  
Author(s):  
Adil Saleem ◽  
Muhammad K. Majeed ◽  
Shah-Iram Niaz ◽  
Muhammad Iqbal ◽  
Muhammad Akhlaq ◽  
...  

Transition metal oxides (TMO) have great potential applications in efficient energy storage devices for their commercial possibilities in lithium-ion batteries (LIBs).


2019 ◽  
Vol 6 (1) ◽  
pp. 305-314 ◽  
Author(s):  
Z. Vivian Feng ◽  
Blake R. Miller ◽  
Taylor G. Linn ◽  
Thomas Pho ◽  
Khoi Nguyen L. Hoang ◽  
...  

The wide applications of lithium intercalating complex metal oxides in energy storage devices call for a better understanding of their environmental impact at the end of their life cycle.


Sign in / Sign up

Export Citation Format

Share Document